Skip to main content
\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)
Mathematics LibreTexts

5: Span and Bases

  • Page ID
    288
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)

    Intuition probably tells you that the plane \(\mathbb{R}^2\) is of dimension two and that the space we live in \(\mathbb{R}^3\) is of dimension three. You have probably also learned in physics that space-time has dimension four and that string theories are models that can live in ten dimensions. In this chapter we will give a mathematical definition of the dimension of a vector space. For this we will first need the notions of linear span, linear independence, and the basis of a vector space.

    • 5.1: Linear Span
      The linear span (or just span) of a set of vectors in a vector space is the intersection of all subspaces containing that set. The linear span of a set of vectors is therefore a vector space.
    • 5.2: Linear Independence
      We are now going to define the notion of linear independence of a list of vectors. This concept will be extremely important in the sections that follow, and especially when we introduce bases and the dimension of a vector space.
    • 5.3: Bases
      A basis of a finite-dimensional vector space is a spanning list that is also linearly independent. We will see that all bases for finite-dimensional vector spaces have the same length. This length will then be called the dimension of our vector space.
    • 5.4: Dimension
      We now come to the important definition of the dimension of a finite-dimensional vector space.
    • 5.E: Exercises for Chapter 5