Skip to main content
Mathematics LibreTexts

5.1: Linear Span

  • Page ID
    289
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    As before, let \(V\) denote a vector space over \(\mathbb{F}\). Given vectors \(v_1,v_2,\ldots,v_m\in V\), a vector \(v\in V\) is a linear combination of \((v_1,\ldots,v_m)\) if there exist scalars \(a_1,\ldots,a_m\in\mathbb{F}\) such that

    \[ v = a_1 v_1 + a_2 v_2 + \cdots + a_m v_m.\]

    Definition 5.1.1: Linear Span

    The linear span (or simply span) of \((v_1,\ldots,v_m)\) is defined as

    \[ \Span(v_1,\ldots,v_m) := \{ a_1 v_1 + \cdots + a_m v_m \mid a_1,\ldots,a_m \in \mathbb{F} \}.\]

    Lemma 5.1.2: Subspaces

    Let \(V\) be a vector space and \(v_1,v_2,\ldots,v_m\in V\). Then

    1. \(v_j\in \Span(v_1,v_2,\ldots,v_m)\).
    2. \(\Span(v_1,v_2,\ldots,v_m)\) is a subspace of \(V\).
    3. If \(U\subset V\) is a subspace such that \(v_1,v_2,\ldots v_m\in U\), then \(\Span(v_1,v_2,\ldots,v_m)\subset U\).

    Proof

    Property~1 is obvious. For Property~2, note that \(0\in\Span(v_1,v_2,\ldots,v_m)\) and that \(\Span(v_1,v_2,\ldots,v_m)\) is closed under addition and scalar multiplication. For Property~3, note that a subspace \(U\) of a vector space \(V\) is closed under addition and scalar multiplication. Hence, if \(v_1,\ldots,v_m\in U\), then any linear combination \(a_1v_1+\cdots +a_m v_m\) must also be an element of \(U\).

    \(\square\)

    Lemma 5.1.2 implies that \(\Span(v_1,v_2,\ldots,v_m)\) is the smallest subspace of \(V\) containing each of \(v_1,v_2,\ldots,v_m\).

    Definition 5.1.3: finite-dimensional and Infinite-dimensional vector spaces

    If \(\Span(v_1,\ldots,v_m)=V\), then we say that \((v_1,\ldots,v_m)\) spans \(V\) and we call \(V\) finite-dimensional. A vector space that is not finite-dimensional is called infinite-dimensional.

    Example \(\PageIndex{1}\):

    The vectors \(e_1=(1,0,\ldots,0)\), \(e_2=(0,1,0,\ldots,0), \ldots, e_n=(0,\ldots,0,1)\) span \(\mathbb{F}^n\). Hence \(\mathbb{F}^n\) is finite-dimensional.

    Example \(\PageIndex{2}\):

    The vectors \(v_1=(1,1,0)\) and \(v_2=(1,-1,0)\) span a subspace of \(\mathbb{R}^3\). More precisely, if we write the vectors in \(\mathbb{R}^3\) as 3-tuples of the form \((x,y,z)\), then \(\Span(v_1,v_2)\) is the \(xy\)-plane in \(\mathbb{R}^3\).

    Example \(\PageIndex{3}\):

    Recall that if \(p(z)=a_mz^m + a_{m-1} z^{m-1} + \cdots + a_1z + a_0\in \mathbb{F}[z]\) is a polynomial with coefficients in \(\mathbb{F}\) such that \(a_m\neq 0\), then we say that \(p(z)\) has degree \(m\). By convention, the degree of the zero polynomial \(p(z)=0\) is \(-\infty\). We denote the degree of \(p(z)\) by \(\deg(p(z))\). Define \( \mathbb{F}_m[z] = \) set of all polynomials in \( \mathbb{F}[z] \) of degree at most m.

    Then \(\mathbb{F}_m[z]\subset \mathbb{F}[z]\) is a subspace since \(\mathbb{F}_m[z]\) contains the zero polynomial and is closed under addition and scalar multiplication. In fact, \(\mathbb{F}_m[z]\) is a finite-dimensional subspace of \(\mathbb{F}[z]\) since

    \[ \mathbb{F}_m[z] = \Span(1,z,z^2,\ldots,z^m). \]

    At the same time, though, note that \(\mathbb{F}[z]\) itself is infinite-dimensional. To see this, assume the contrary, namely that

    \[ \mathbb{F}[z] = \Span(p_1(z),\ldots,p_k(z))\]

    for a finite set of \(k\) polynomials \(p_1(z),\ldots,p_k(z)\). Let \(m=\max(\deg p_1(z),\ldots,\deg p_k(z))\). Then \(z^{m+1}\in\mathbb{F}[z]\), but \(z^{m+1}\notin \Span(p_1(z),\ldots,p_k(z))\).


    This page titled 5.1: Linear Span is shared under a not declared license and was authored, remixed, and/or curated by Isaiah Lankham, Bruno Nachtergaele, & Anne Schilling.

    • Was this article helpful?