Skip to main content
\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)
Mathematics LibreTexts

10.1: Coordinate Vectors

  • Page ID
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)

    Let \(V\) be a finite-dimensional inner product space with inner product \(\inner{\cdot}{\cdot}\) and dimension \(\dim(V)=n\). Then \(V\) has an orthonormal basis \(e=(e_1,\ldots,e_n)\), and, according to Theorem9.4.6~\ref{thm:ParsevalsIdentity}, every \(v\in V\) can be written as

    \begin{equation*} v = \sum_{i=1}^n \inner{v}{e_i} e_i. \end{equation*}
    This induces a map
    [\,\cdot\,]_e : V &\to \mathbb{F}^n\\
    v &\mapsto \begin{bmatrix}
    \inner{v}{e_1}\\ \vdots \\ \inner{v}{e_n} \end{bmatrix},

    which maps the vector \(v\in V\) to the \(n\times 1\) column vector of its coordinates with respect to the basis \(e\). The column vector \([v]_e\) is called the coordinate vector of \(v\) with respect to the basis \(e\).

    Example \(\PageIndex{1}\):

    Recall that the vector space \(\mathbb{R}_1[x]\) of polynomials over \(\mathbb{R}\) of degree at most 1 is an inner product space with inner product defined by

    \inner{f}{g} = \int_0^1 f(x)g(x)dx.
    Then \(e=(1,\sqrt{3}(-1+2x))\) forms an orthonormal basis for \(\mathbb{R}_1[x]\). The coordinate vector of the polynomial \(p(x)=3x+2\in \mathbb{R}_1[x]\) is, e.g.,
    \[ [p(x)]_e= \frac{1}{2} \begin{bmatrix} 7 \\ \sqrt{3} \end{bmatrix}. \]

    Note also that the map \([\,\cdot\,]_e\) is an isomorphism (meaning that it is an injective and surjective linear map) and that it is also inner product preserving. Denote the usual inner product on \(\mathbb{F}^n\) by

    \inner{x}{y}_{\mathbb{F}^n} = \sum_{k=1}^n x_k \overline{y}_k.


    \inner{v}{w}_V = \inner{[v]_e}{[w]_e}_{\mathbb{F}^n}, \qquad \text{for all \(v,w\in V\),}


    \inner{v}{w}_V = \sum_{i,j=1}^n \inner{\inner{v}{e_i} e_i}{\inner{w}{e_j}e_j}
    = \sum_{i,j=1}^n \inner{v}{e_i} \overline{\inner{w}{e_j}} \inner{e_i}{e_j}\\
    = \sum_{i,j=1}^n \inner{v}{e_i} \overline{\inner{w}{e_j}} \delta_{ij}
    = \sum_{i=1}^n \inner{v}{e_i} \overline{\inner{w}{e_i}} = \inner{[v]_e}{[w]_e}_{\mathbb{F}^n}.

    It is important to remember that the map \([\,\cdot\,]_e\) depends on the choice of basis \(e=(e_1,\ldots,e_n)\).