10.1: Coordinate Vectors

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

Let $$V$$ be a finite-dimensional inner product space with inner product $$\inner{\cdot}{\cdot}$$ and dimension $$\dim(V)=n$$. Then $$V$$ has an orthonormal basis $$e=(e_1,\ldots,e_n)$$, and, according to Theorem9.4.6~\ref{thm:ParsevalsIdentity}, every $$v\in V$$ can be written as

\begin{equation*} v = \sum_{i=1}^n \inner{v}{e_i} e_i. \end{equation*}
This induces a map
\begin{equation*}
\begin{split}
[\,\cdot\,]_e : V &\to \mathbb{F}^n\\
v &\mapsto \begin{bmatrix}
\inner{v}{e_1}\\ \vdots \\ \inner{v}{e_n} \end{bmatrix},
\end{split}
\end{equation*}

which maps the vector $$v\in V$$ to the $$n\times 1$$ column vector of its coordinates with respect to the basis $$e$$. The column vector $$[v]_e$$ is called the coordinate vector of $$v$$ with respect to the basis $$e$$.

Example $$\PageIndex{1}$$:

Recall that the vector space $$\mathbb{R}_1[x]$$ of polynomials over $$\mathbb{R}$$ of degree at most 1 is an inner product space with inner product defined by

\begin{equation*}
\inner{f}{g} = \int_0^1 f(x)g(x)dx.
\end{equation*}
Then $$e=(1,\sqrt{3}(-1+2x))$$ forms an orthonormal basis for $$\mathbb{R}_1[x]$$. The coordinate vector of the polynomial $$p(x)=3x+2\in \mathbb{R}_1[x]$$ is, e.g.,
$[p(x)]_e= \frac{1}{2} \begin{bmatrix} 7 \\ \sqrt{3} \end{bmatrix}.$

Note also that the map $$[\,\cdot\,]_e$$ is an isomorphism (meaning that it is an injective and surjective linear map) and that it is also inner product preserving. Denote the usual inner product on $$\mathbb{F}^n$$ by

\begin{equation*}
\inner{x}{y}_{\mathbb{F}^n} = \sum_{k=1}^n x_k \overline{y}_k.
\end{equation*}

Then

\begin{equation*}
\inner{v}{w}_V = \inner{[v]_e}{[w]_e}_{\mathbb{F}^n}, \qquad \text{for all $$v,w\in V$$,}
\end{equation*}

since

\begin{multline*}
\inner{v}{w}_V = \sum_{i,j=1}^n \inner{\inner{v}{e_i} e_i}{\inner{w}{e_j}e_j}
= \sum_{i,j=1}^n \inner{v}{e_i} \overline{\inner{w}{e_j}} \inner{e_i}{e_j}\\
= \sum_{i,j=1}^n \inner{v}{e_i} \overline{\inner{w}{e_j}} \delta_{ij}
= \sum_{i=1}^n \inner{v}{e_i} \overline{\inner{w}{e_i}} = \inner{[v]_e}{[w]_e}_{\mathbb{F}^n}.
\end{multline*}

It is important to remember that the map $$[\,\cdot\,]_e$$ depends on the choice of basis $$e=(e_1,\ldots,e_n)$$.

Contributors

Both hardbound and softbound versions of this textbook are available online at WorldScientific.com.

This page titled 10.1: Coordinate Vectors is shared under a not declared license and was authored, remixed, and/or curated by Isaiah Lankham, Bruno Nachtergaele, & Anne Schilling.