11.6: Polar decomposition
- Page ID
- 310
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Continuing the analogy between \(\mathbb{C}\) and \(\mathcal{L}(V)\), recall the polar form of a complex number \(z=|z|e^{i\theta}\), where \(|z|\) is the absolute value or modulus of \(z\) and \(e^{i\theta}\) lies on the unit circle in \(\mathbb{R}^{2}\). In terms of an operator \(T\in \mathcal{L}(V)\), where \(V\) is a complex inner product space, a unitary operator \(U\) takes the role of \(e^{i\theta}\), and \(|T|\) takes the role of the modulus. As in Section11.5, \(T^*T\ge 0\) so that \( |T|:=\sqrt{T^*T}\) exists and satisfies \(|T|\ge 0\) as well.
Theorem 11.6.1. For each \(T\in \mathcal{L}(V)\), there exists a unitary \(U\) such that
\[ T = U |T|. \]
This is called the polar decomposition of \(T\).
Proof. We start by noting that
\[ \norm{Tv}^2 = \norm{\,|T|\,v}^2, \]
since \(\inner{Tv}{Tv} = \inner{v}{T^*Tv} = \inner{\sqrt{T^*T}v}{\sqrt{T^*T}v}\). This implies that \(\kernel(T) = \kernel(|T|)\). By the Dimension Formula, this also means that \(\dim(\range(T)) = \dim(\range(|T|))\). Moreover, we can define an isometry \(S: \range(|T|) \to \range(T)\) by setting
\[ S( |T|v) = Tv. \]
The trick is now to define a unitary operator \(U\) on all of \(V\) such that the restriction of \(U\) onto the range of \(|T|\) is \(S\), i.e.,
\[ U|_{\range(|T|)} = S. \]
Note that \(\kernel(|T|) \bot \range(|T|)\), i.e., for \(v\in \kernel(|T|)\) and \(w=|T|u \in \range(|T|)\),
\[ \inner{w}{v} = \inner{|T|u}{v} = \inner{u}{|T|v} = \inner{u}{0} = 0 \]
since \(|T|\) is self-adjoint.
Pick an orthonormal basis \(e=(e_1,\ldots,e_m)\) of \(\kernel(|T|)\) and an orthonormal basis \(f=(f_1,\ldots,f_m)\) of \((\range(T))^\bot\). Set \(\tilde{S} e_i = f_i\), and extend \(\tilde{S}\) to all of \(\kernel(|T|)\) by linearity. Since \(\kernel(|T|)\bot \range(|T|)\), any \(v\in V\) can be uniquely written as \(v=v_1+v_2\), where \(v_1\in \kernel(|T|)\) and \(v_2\in \range(|T|)\). Now define \(U:V\to V\) by setting \(Uv = \tilde{S} v_1 + S v_2\). Then \(U\) is an isometry. Moreover, \(U\) is also unitary, as shown by the following calculation application of the Pythagorean theorem:
\begin{equation*}
\begin{split}
\norm{Uv}^2 &= \norm{\tilde{S}v_1 + S v_2}^2 = \norm{\tilde{S} v_1}^2 + \norm{S v_2}^2\\
&= \norm{v_1}^2 + \norm{v_2}^2 = \norm{v}^2.
\end{split}
\end{equation*}
Also, note that \(U|T|=T\) by construction since \(U|_{\kernel(|T|)}\) is irrelevant.
Contributors
- Isaiah Lankham, Mathematics Department at UC Davis
- Bruno Nachtergaele, Mathematics Department at UC Davis
- Anne Schilling, Mathematics Department at UC Davis
Both hardbound and softbound versions of this textbook are available online at WorldScientific.com.