Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

12.E: Exercises

( \newcommand{\kernel}{\mathrm{null}\,}\)

Calculational Exercises

1. In each of the following, find matrices A,x, and b such that the given system of linear equations can be expressed as the single matrix equation Ax=b.

(a)  2x13x2+5x3=79x1x2+x3=1x1+5x2+4x3=0}   (b)  4x13x3+x4=15x1+x28x4=32x15x2+9x3x4=03x2x3+7x4=2}

2. In each of the following, express the matrix equation as a system of linear equations.

(a)[312437215][x1x2x3]=[214]   (b)[3201502231472516][wxyz]=[0000]



3. Suppose that A,B,C,D, and E are matrices over F having the following sizes:

A is 4×5,  B is 4×5,  C is 5×2,  D is 4×2,

Determine whether the following matrix expressions are defined, and, for those that are defined, determine the size of the resulting matrix.

(a) BA   (b) AC+D   (c) AE+B   (d) AB+B   (e) E(A+B)   (f)E(AC)

4. Suppose that A,B,C,D, and E are the following matrices:

A=[301211], B=[4102], C=[142315],D=[152101324], and E=[613112413].

Determine whether the following matrix expressions are defined, and, for those that are defined, compute the resulting matrix.

(a) D+E  (b) DE  (c) 5A  (d) 7C  (e) 2BC(f) 2E2D  (g) 3(D+2E)  (h) AA  (i) AB  (j) BA(k) (3E)D  (l) (AB)C  (m) A(BC)  (n) (4B)C+2B  (o) D3E(p) CA+2E  (q) 4ED  (r) DD

5. Suppose that A,B, and C are the following matrices and that a=4 and b=7.

A=[152101324],B=[613112413], and C=[152101324].

Verify computationally that
(a) A+(B+C)=(A+B)+C   (b) (AB)C=A(BC)(c) (a+b)C=aC+bC   (d) a(BC)=aBaC(e) a(BC)=(aB)C=B(aC)   (f)A(BC)=ABAC(g) (B+C)A=BA+CA   (h)a(bC)=(ab)C(i) BC=C+B

6. Suppose that A is the matrix
A=[3121]


Compute p(A), where p(z) is given by
(a) p(z)=z2   (b) p(z)=2z2z+1(c) p(z)=z32z+4   (d) p(z)=z24z+1

7. Define matrices A,B,C,D, and E by

A=[3121], B=[4102], C=[235911154],D=[152101324], and E=[613112413].



(a) Factor each matrix into a product of elementary matrices and an RREF matrix.
(b) Find, if possible, the LU-factorization of each matrix.
(c) Determine whether or not each of these matrices is invertible, and, if possible, compute the inverse.

8. Suppose that A,B,C,D, and E are the following matrices:

A=[301211], B=[4102], C=[142315],D=[152101324], and E=[613112413].



Determine whether the following matrix expressions are defined, and, for those that are defined, compute the resulting matrix.

(a) 2AT+C   (b) DTET   (c) (DE)T(d) BT+5CT   (e) 12CT14A   (f) BBT(g) 3ET3DT   (h) (2ET3DT)T   (i) CCT(j) (DA)T   (k) (CTB)AT   (l) (2DTE)A(m) (BAT2C)T   (n) BT(CCTATA)   (o) DTET(ED)T(p) trace(DDT)   (q) trace(4ETD)   (r) trace(CTAT+2ET)

Proof-Writing Exercises

1. Let nZ+ be a positive integer and ai,jF be scalars for i,j=1,,n. Prove that
the following two statements are equivalent:
(a) The trivial solution x1==xn=0 is the only solution to the homogeneous system of equations
nk=1a1,kxk=0nk=1an,kxk=0}.

(b) For every choice of scalars c1,,cnF, there is a solution to the system of equations nk=1a1,kxk=c1nk=1an,kxk=cn}.


2. Let A and B be any matrices.
(a) Prove that if both AB and BA are defined, then AB and BA are both square matrices.
(b) Prove that if A has size m×n and ABA is defined, then B has size n×m.
3. Suppose that A is a matrix satisfying ATA=A. Prove that A is then a symmetric matrix and that A=A2.
4. Suppose A is an upper triangular matrix and that p(z) is any polynomial. Prove or give a counterexample: p(A) is a upper triangular matrix.


This page titled 12.E: Exercises is shared under a not declared license and was authored, remixed, and/or curated by Isaiah Lankham, Bruno Nachtergaele, & Anne Schilling.

Support Center

How can we help?