2.3.1: Exercises 2.3
- Page ID
- 65825
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\dsum}{\displaystyle\sum\limits} \)
\( \newcommand{\dint}{\displaystyle\int\limits} \)
\( \newcommand{\dlim}{\displaystyle\lim\limits} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)In Exercises \(\PageIndex{1}\) - \(\PageIndex{4}\), vectors \(\vec{x}\) and \(\vec{y}\) are given. Sketch \(\vec{x}\), \(\vec{y}\), \(\vec{x}+\vec{y}\), and \(\vec{x}-\vec{y}\) on the same Cartesian axes.
\(\vec{x}=\left[\begin{array}{c}{1}\\{1}\end{array}\right],\quad\vec{y}=\left[\begin{array}{c}{-2}\\{3}\end{array}\right]\)
- Answer
-
\(\vec{x}+\vec{y}=\left[\begin{array}{c}{-1}\\{4}\end{array}\right],\quad\vec{x}-\vec{y}=\left[\begin{array}{c}{3}\\{-2}\end{array}\right]\)
Sketches will vary depending on choice of origin of each vector.

Figure \(\PageIndex{1}\)
\(\vec{x}=\left[\begin{array}{c}{3}\\{1}\end{array}\right],\quad\vec{y}=\left[\begin{array}{c}{1}\\{-2}\end{array}\right]\)
- Answer
-
\(\vec{x}+\vec{y}=\left[\begin{array}{c}{4}\\{-1}\end{array}\right],\quad\vec{x}-\vec{y}=\left[\begin{array}{c}{2}\\{3}\end{array}\right]\)
Sketches will vary depending on choice of origin of each vector.

Figure \(\PageIndex{2}\)
\(\vec{x}=\left[\begin{array}{c}{-1}\\{1}\end{array}\right],\quad\vec{y}=\left[\begin{array}{c}{-2}\\{2}\end{array}\right]\)
- Answer
-
\(\vec{x}+\vec{y}=\left[\begin{array}{c}{-3}\\{3}\end{array}\right],\quad\vec{x}-\vec{y}=\left[\begin{array}{c}{1}\\{-1}\end{array}\right]\)
Sketches will vary depending on choice of origin of each vector.

Figure \(\PageIndex{3}\)
\(\vec{x}=\left[\begin{array}{c}{2}\\{0}\end{array}\right],\quad\vec{y}=\left[\begin{array}{c}{1}\\{3}\end{array}\right]\)
- Answer
-
\(\vec{x}+\vec{y}=\left[\begin{array}{c}{3}\\{3}\end{array}\right],\quad\vec{x}-\vec{y}=\left[\begin{array}{c}{1}\\{-3}\end{array}\right]\)
Sketches will vary depending on choice of origin of each vector.

Figure \(\PageIndex{4}\)
In Exercises \(\PageIndex{5}\) – \(\PageIndex{8}\), vectors \(\vec{x}\) and \(\vec{y}\) are drawn. Sketch \(2\vec{x}-\vec{y}\), \(\vec{x}+\vec{y}\), \(\vec{x}-\vec{y}\) on the same Cartesian axes.

Figure \(\PageIndex{5}\)
- Answer
-
Sketches will vary depending on choice of origin of each vector.

Figure \(\PageIndex{6}\)

Figure \(\PageIndex{7}\)
- Answer
-
Sketches will vary depending on choice of origin of each vector.

Figure \(\PageIndex{8}\)

Figure \(\PageIndex{9}\)
- Answer
-
Sketches will vary depending on choice of origin of each vector.

Figure \(\PageIndex{10}\)

Figure \(\PageIndex{11}\)
- Answer
-
Sketches will vary depending on choice of origin of each vector.

Figure \(\PageIndex{12}\)
In Exercises \(\PageIndex{9}\) - \(\PageIndex{12}\), a vector \(\vec{x}\) and a scalar \(a\) are given. Using Definition Vector Length compute the lengths of \(\vec{x}\) and \(a\vec{x}\), then compare these lengths.
\(\vec{x}=\left[\begin{array}{c}{2}\\{1}\end{array}\right],\quad a=3\)
- Answer
-
\(||\vec{x}||=\sqrt{5};\: ||a\vec{x}||=\sqrt{45}=3\sqrt{5}\). The vector \(a\vec{x}\) is \(3\) times as long as \(\vec{x}\).
\(\vec{x}=\left[\begin{array}{c}{4}\\{7}\end{array}\right],\quad a=-2\)
- Answer
-
\(||\vec{x}||=\sqrt{65};\: ||a\vec{x}||=\sqrt{260}=2\sqrt{65}\). The vector \(a\vec{x}\) is \(2\) times as long as \(\vec{x}\).
\(\vec{x}=\left[\begin{array}{c}{-3}\\{5}\end{array}\right],\quad a=-1\)
- Answer
-
\(||\vec{x}||=\sqrt{34};\: ||a\vec{x}||=\sqrt{34}\). The vectors \(a\vec{x}\) and \(\vec{x}\) are the same length (they just point in opposite directions).
\(\vec{x}=\left[\begin{array}{c}{3}\\{-9}\end{array}\right],\quad a=\frac{1}{3}\)
- Answer
-
\(||\vec{x}||=\sqrt{90}=3\sqrt{10};\: ||a\vec{x}||=\sqrt{10}\). The vector \(a\vec{x}\) is one-third the length of \(\vec{x}\); equivalently, \(\vec{x}\) is \(3\) times as long as \(a\vec{x}\).
Four pairs of vectors \(\vec{x}\) and \(\vec{y}\) are given below. For each pair, compute \(||\vec{x}||\), \(||\vec{y}||\), and \(||\vec{x}+\vec{y}||\). Use this information to answer: Is it always, sometimes, or never true that \(||\vec{x}||+||\vec{y}||=||\vec{x}+\vec{y}||\)? If it always or never true, explain why. If it is sometimes true, explain when it is true.
- \(\vec{x}=\left[\begin{array}{c}{1}\\{1}\end{array}\right],\quad\vec{y}=\left[\begin{array}{c}{2}\\{3}\end{array}\right]\)
- \(\vec{x}=\left[\begin{array}{c}{1}\\{-2}\end{array}\right],\quad\vec{y}=\left[\begin{array}{c}{3}\\{-6}\end{array}\right]\)
- \(\vec{x}=\left[\begin{array}{c}{-1}\\{3}\end{array}\right],\quad\vec{y}=\left[\begin{array}{c}{2}\\{5}\end{array}\right]\)
- \(\vec{x}=\left[\begin{array}{c}{2}\\{1}\end{array}\right],\quad\vec{y}=\left[\begin{array}{c}{-4}\\{-2}\end{array}\right]\)
- Answer
-
- \(||\vec{x}||=\sqrt{2};\: ||\vec{y}||=\sqrt{13};\: ||\vec{x}+\vec{y}||=5\).
- \(||\vec{x}||=\sqrt{5};\: ||\vec{y}||=3\sqrt{5};\: ||\vec{x}+\vec{y}||=4\sqrt{5}\).
- \(||\vec{x}||=\sqrt{10};\: ||\vec{y}||=\sqrt{29};\: ||\vec{x}+\vec{y}||=\sqrt{65}\).
- \(||\vec{x}||=\sqrt{5};\: ||\vec{y}||=2\sqrt{5};\: ||\vec{x}+\vec{y}||=\sqrt{5}\).
The equality holds sometimes; only when \(\vec{x}\) and \(\vec{y}\) point along the same line, in the same direction.
In Exercises \(\PageIndex{14}\) - \(\PageIndex{17}\), a matrix \(A\) is given. Sketch \(\vec{x}\), \(\vec{y}\), \(A\vec{x}\) and \(A\vec{y}\) on the same Cartesian axes, where
\[\vec{x}=\left[\begin{array}{c}{1}\\{1}\end{array}\right]\quad\text{and}\quad\vec{y}=\left[\begin{array}{c}{-1}\\{2}\end{array}\right]\nonumber \]
\(A=\left[\begin{array}{cc}{1}&{-1}\\{2}&{3}\end{array}\right]\)
- Answer
-

Figure \(\PageIndex{13}\)
\(A=\left[\begin{array}{cc}{2}&{0}\\{-1}&{3}\end{array}\right]\)
- Answer
-

Figure \(\PageIndex{14}\)
\(A=\left[\begin{array}{cc}{1}&{1}\\{1}&{1}\end{array}\right]\)
- Answer
-

Figure \(\PageIndex{15}\)
\(A=\left[\begin{array}{cc}{1}&{2}\\{-1}&{-2}\end{array}\right]\)
- Answer
-

Figure \(\PageIndex{16}\)


