# 2.7.1: Exercises 2.7

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

In Exercises $$\PageIndex{1}$$ - $$\PageIndex{4}$$, matrices $$A$$ and $$B$$ are given. Compute $$(AB)^{-1}$$ and $$B^{-1}A^{-1}$$.

##### Exercise $$\PageIndex{1}$$

$$A=\left[\begin{array}{cc}{1}&{2}\\{1}&{1}\end{array}\right],\quad B=\left[\begin{array}{cc}{3}&{5}\\{2}&{5}\end{array}\right]$$

$$(AB)^{-1}=\left[\begin{array}{cc}{-2}&{3}\\{1}&{-1.4}\end{array}\right]$$

##### Exercise $$\PageIndex{2}$$

$$A=\left[\begin{array}{cc}{1}&{2}\\{3}&{4}\end{array}\right],\quad B=\left[\begin{array}{cc}{7}&{1}\\{2}&{1}\end{array}\right]$$

$$(AB)^{-1}=\left[\begin{array}{cc}{-7/10}&{3/10}\\{29/10}&{-11/10}\end{array}\right]$$

##### Exercise $$\PageIndex{3}$$

$$A=\left[\begin{array}{cc}{2}&{5}\\{3}&{8}\end{array}\right],\quad B=\left[\begin{array}{cc}{1}&{-1}\\{1}&{4}\end{array}\right]$$

$$(AB)^{-1}=\left[\begin{array}{cc}{29/5}&{-18/5}\\{-11/5}&{7/5}\end{array}\right]$$

##### Exercise $$\PageIndex{4}$$

$$A=\left[\begin{array}{cc}{2}&{4}\\{2}&{5}\end{array}\right],\quad B=\left[\begin{array}{cc}{2}&{2}\\{6}&{5}\end{array}\right]$$

$$(AB)^{-1}=\left[\begin{array}{cc}{-29/4}&{6}\\{17/2}&{-7}\end{array}\right]$$

In Exercises $$\PageIndex{5}$$ - $$\PageIndex{8}$$, a $$2\times 2$$ matrix $$A$$ is given. Compute $$A^{-1}$$ and $$(A^{-1})^{-1}$$ using Theorem 2.6.3.

##### Exercise $$\PageIndex{5}$$

$$A=\left[\begin{array}{cc}{-3}&{5}\\{1}&{-2}\end{array}\right]$$

$$A^{-1}=\left[\begin{array}{cc}{-2}&{-5}\\{-1}&{-3}\end{array}\right],\quad (A^{-1})^{-1}=\left[\begin{array}{cc}{-3}&{5}\\{1}&{-2}\end{array}\right]$$

##### Exercise $$\PageIndex{6}$$

$$A=\left[\begin{array}{cc}{3}&{5}\\{2}&{4}\end{array}\right]$$

$$A^{-1}=\left[\begin{array}{cc}{2}&{-5/2}\\{-1}&{3/2}\end{array}\right],\quad (A^{-1})^{-1}=\left[\begin{array}{cc}{3}&{5}\\{2}&{4}\end{array}\right]$$

##### Exercise $$\PageIndex{7}$$

$$A=\left[\begin{array}{cc}{2}&{7}\\{1}&{3}\end{array}\right]$$

$$A^{-1}=\left[\begin{array}{cc}{-3}&{7}\\{1}&{-2}\end{array}\right],\quad (A^{-1})^{-1}=\left[\begin{array}{cc}{2}&{7}\\{1}&{3}\end{array}\right]$$

##### Exercise $$\PageIndex{8}$$

$$A=\left[\begin{array}{cc}{9}&{0}\\{7}&{9}\end{array}\right]$$

$$A^{-1}=\left[\begin{array}{cc}{1/9}&{0}\\{-7/81}&{1/9}\end{array}\right],\quad (A^{-1})^{-1}=\left[\begin{array}{cc}{9}&{0}\\{7}&{9}\end{array}\right]$$

##### Exercise $$\PageIndex{9}$$

Find $$2\times 2$$ matrices $$A$$ and $$B$$ that are each invertible, but $$A + B$$ is not.

Solutions will vary.

##### Exercise $$\PageIndex{10}$$

Create a random $$6\times 6$$ matrix $$A$$, then have a calculator or computer compute $$AA^{−1}$$. Was the identity matrix returned exactly? Comment on your results.

Likely some entries that should be 0 will not be exactly 0, but rather very small values

##### Exercise $$\PageIndex{11}$$

Use a calculator or computer to compute $$AA^{-1}$$, where

$A=\left[\begin{array}{cccc}{1}&{2}&{3}&{4}\\{1}&{4}&{9}&{16}\\{1}&{8}&{27}&{64}\\{1}&{16}&{81}&{256}\end{array}\right]. \nonumber$

Was the identity matrix returned exactly. Comment on your results.