Processing math: 100%
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

9: Adequacy of Solutions

( \newcommand{\kernel}{\mathrm{null}\,}\)

Learning Objectives

After reading this chapter, you should be able to:

  1. know the difference between ill-conditioned and well-conditioned systems of equations,
  2. define and find the norm of a matrix
  3. define and evaluate the condition number of an invertible square matrix
  4. relate the condition number of a coefficient matrix to the ill or well conditioning of the system of simultaneous linear equations, that is, how much can you trust the solution of the simultaneous linear equations.

What do you mean by ill-conditioned and well-conditioned system of equations?

A system of equations is considered to be well-conditioned if a small change in the coefficient matrix or a small change in the right hand side results in a small change in the solution vector.

A system of equations is considered to be ill-conditioned if a small change in the coefficient matrix or a small change in the right hand side results in a large change in the solution vector.

Example 1

Is this system of equations well-conditioned?

[1223.999][xy]=[47.999] 

Solution

The solution to the above set of equations is

[xy]=[21]

Make a small change in the right-hand side vector of the equations

[1223.999][xy]=[4.0017.998]  

gives

[xy]=[3.9994.000]

Make a small change in the coefficient matrix of the equations

[1.0012.0012.0013.998][xy]=[47.999]  

gives

[xy]=[3.9940.001388]

This last systems of equation “looks” ill-conditioned because a small change in the coefficient matrix or the right hand side resulted in a large change in the solution vector.

Example 2

Is this system of equations well-conditioned?

[1223][xy]=[47]  

Solution

The solution to the above equations is

[xy]=[21]

Make a small change in the right-hand side vector of the equations.

[1223][xy]=[4.0017.001]  

gives

[xy]=[1.9991.001]

Make a small change in the coefficient matrix of the equations.

[1.0012.0012.0013.001][xy]=[47]  

gives

[xy]=[2.0030.997]

This system of equation “looks” well-conditioned because small changes in the coefficient matrix or the right-hand side resulted in small changes in the solution vector.

So, what if the system of equations is ill conditioned or well-conditioned?

Well, if a system of equations is ill-conditioned, we cannot trust the solution as much. Revisit the velocity problem, Example 5.1 in Chapter 5. The values in the coefficient matrix [A] are squares of time, etc. For example, if instead of a11=25, you used a11=24.99, would you want this small change to make a huge difference in the solution vector. If it did, would you trust the solution?

Later we will see how much (quantifiable terms) we can trust the solution in a system of equations. Every invertible square matrix has a condition number and coupled with the machine epsilon, we can quantify how many significant digits one can trust in the solution.

To calculate the condition number of an invertible square matrix, I need to know what the norm of a matrix means. How is the norm of a matrix defined?

Just like the determinant, the norm of a matrix is a simple unique scalar number. However, the norm is always positive and is defined for all matrices – square or rectangular, and invertible or noninvertible square matrices.

One of the popular definitions of a norm is the row sum norm (also called the uniform-matrix norm). For a m×n matrix [A], the row sum norm of [A] is defined as

A=max1imnj=1|aij|

that is, find the sum of the absolute value of the elements of each row of the matrix [A]. The maximum out of the m such values is the row sum norm of the matrix [A].

Example 3

Find the row sum norm of the following matrix [A].

A=[107032.0996515]

Solution

A=max1i33j=1|aij|=max[(|10|+|7|+|0|),(|3|+|2.099|+|6|),(|5|+|1|+|5|)]=max[(10+7+0),(3+2.099+6),(5+1+5)]=max[17, 11.099, 11]=17

How is the norm related to the conditioning of the matrix?

Let us start answering this question using an example. Go back to the ill-conditioned system of equations,

[1223.999][xy]=[47.999]

that gives the solution as

[xy]=[21]

Denoting the above set of equations as

[A][X]=[C]

X=2

C=7.999

Making a small change in the right-hand side,

[1223.999][xy]=[4.0017.998]

gives

[xy]=[3.9994.000]

Denoting the above set of equations by

[A][X]=[C]

right hand side vector is found by

[ΔC]=[C][C]

and the change in the solution vector is found by

[ΔX]=[X][X]

then

[ΔC]=[4.0017.998][47.999]=[0.0010.001]

and

[ΔX]=[3.9994.000][21]=[5.9993.000]

then

ΔC=0.001

ΔX=5.999

The relative change in the norm of the solution vector is

ΔXX=5.9992

 =2.9995

The relative change in the norm of the right-hand side vector is

ΔCC=0.0017.999

 =1.250×104

See the small relative change of 1.250×104 in the right-hand side vector norm results in a large relative change in the solution vector norm of 2.9995.

In fact, the ratio between the relative change in the norm of the solution vector and the relative change in the norm of the right-hand side vector is

ΔX/XΔC/C=2.99951.250×104=23993

Let us now go back to the well-conditioned system of equations.

[1223] [xy]=[47]

gives

[xy]=[21]

Denoting the system of equations by

[A][X]=[C]

X=2

C=7

Making a small change in the right-hand side vector

[1223][xy]=[4.0017.001]

gives

[xy]=[1.9991.001]

Denoting the above set of equations by

[A][X]=[C]

the change in the right-hand side vector is then found by

[ΔC]=[C][C]

and the change in the solution vector is

[ΔX]=[X][X]

then

[ΔC]=[4.0017.001][47]=[0.0010.001]

and

[ΔX]=[1.9991.001][21]=[0.0010.001]

then

ΔC=0.001

ΔX=0.001

The relative change in the norm of solution vector is

ΔXX=0.0012=5×104

The relative change in the norm of the right-hand side vector is

ΔCC=0.0017=1.429×104

See the small relative change in the right-hand side vector norm of 1.429×104 results in the small relative change in the solution vector norm of 5×104.

In fact, the ratio between the relative change in the norm of the solution vector and the relative change in the norm of the right-hand side vector is

ΔX/XΔC/C=5×1041.429×104=3.5

What are some of the properties of norms?

  1. For a matrix [A], A0
  2. For a matrix [A] and a scalar k, kA=|k|A
  3. For two matrices [A] and [B] of same order, A+BA+B
  4. For two matrices [A] and [B] that can be multiplied as [A] [B], ABAB

Is there a general relationship that exists between ΔX/X and ΔC/C or between ΔX/X and ΔA/A? If so, it could help us identify well-conditioned and ill conditioned system of equations.

If there is such a relationship, will it help us quantify the conditioning of the matrix? That is, will it tell us how many significant digits we could trust in the solution of a system of simultaneous linear equations?

There is a relationship that exists between

ΔXXandΔCC

and between

ΔXXandΔAA

These relationships are

ΔXXA  A1ΔCC

and

ΔXX+ΔXA  A1ΔAA

The above two inequalities show that the relative change in the norm of the right-hand side vector or the coefficient matrix can be amplified by as much as AA1.

This number AA1 is called the condition number of the matrix and coupled with the machine epsilon, we can quantify the accuracy of the solution of [A] [X]=[C].

Prove for

[A] [X]=[C]

that

ΔXX+ΔX  A  A1ΔAA

Proof

Let

[A]  [X]=[C](1)

Then if [A] is changed to [A], the [X] will change to [X], such

that

[A]  [X]=[C](2)

From Equations (1) and (2),

[A]  [X]=[A][X]

Denoting change in [A] and [X] matrices as [ΔA] and [ΔX], respectively

[ΔA]=[A][A]

[ΔX]=[X][X]

then

[A][X]=  ([A]+[ΔA]) ([X]+[ΔX])

Expanding the above expression

[A][X]= [A][X]+[A][ΔX]+[ΔA][X]+[ΔA][ΔX]

[0]=[A][ΔX]+[ΔA]([X]+[ΔX])

[A][ΔX]=[ΔA]([X]+[ΔX])

[ΔX]=[A]1[ΔA]([X]+[ΔX])

Applying the theorem of norms, that the norm of multiplied matrices is less than the multiplication of the individual norms of the matrices,

ΔXA1ΔAX+ΔX

Multiplying both sides by A

A ΔXAA1ΔAX+ΔX

ΔXX+ΔXA A1 ΔAA

How do I use the above theorems to find how many significant digits are correct in my solution vector?

The relative error in a solution vector norm is Cond (A) ×relative error in right hand side vector norm.

The possible relative error in the solution vector norm is Cond(A)×mach

Hence Cond(A)×mach should give us the number of significant digits, m that are at least correct in our solution by finding out the largest value of m for which Cond(A)×mach is less than 0.5×10m.

Example 4

How many significant digits can I trust in the solution of the following system of equations?

[1223.999] [xy]=[24]

Solution

For

[A]=[1223.999] 

it can be shown

[A]1=[3999200020001000] 

A=5.999

A1=5999

Cond(A)=AA1=5.999×5999.4=35990

Assuming single precision with 23 bits used in the mantissa for real numbers, the machine epsilon is

mach=223=0.119209×106

Cond(A)×mach=35990×0.119209×106=0.4290×102

For what maximum positive value of m, would Cond(A)×mach be less than or equal to 0.5×10m

0.4290×1020.5×10m

0.8580×10210m

log(0.8580×102)log(10m)

2.067m

m2.067

m2

So, two significant digits are at least correct in the solution vector.

Example 5

How many significant digits can I trust in the solution of the following system of equations?

[1223] [xy]=[47]

Solution

For

[A]=[1223] 

it can be shown

[A]1=[3221] 

Then

A=5,

A1=5.

Cond (A)=A  A1=5×5=25

Assuming single precision with 23 bits used in the mantissa for real numbers, the machine epsilon

mach=223=0.119209×106

Cond(A)×mach=25×0.119209×106=0.2980×105

For what maximum positive value of m, would Cond(A)×mach be less than or equal to 0.5×10m

0.2980×1050.5×10m

m5

So, five significant digits are at least correct in the solution vector.

Adequacy of Solutions Quiz

Quiz 1

The row sum norm of the matrix

[A]=[673131921232941475161] is

(A) 29

(B) 61

(C) 98

(D) 200

Quiz 2

The adequacy of the solution of simultaneous linear equations [A][X]=[C] depends on

(A) the condition number of coefficient matrix [A]

(B) the machine epsilon

(C) the condition number for matrix [A]and the machine epsilon

(D) norm of the coefficient matrix [A]

Quiz 3

Given a set of equations in matrix form [A][X]=[C], A=250,A1=40and εmach=0.119×106, then the number of significant digits you can at least trust in the solution are

(A) 1

(B) 2

(C) 3

(D) 4

Quiz 4

The solution to a set of simultaneous linear equations

[a11a12a13a21a22a23a31a32a33][x1x2x3]=[4494138] is given as

[x1x2x3]=[247] The solution to another set of simultaneous linear equations is given by (note the coefficient matrix is the same as above)

[a11a12a13a21a22a23a31a32a33][x1x2x3]=[43.9993.98138.03]

is given as

[x1x2x3]=[214.01208.0160]

Based on the row sum norm, the condition number of the coefficient matrix is greater than (choose the largest possible value)

(A) 1

(B) 138

(C) 4500

(D) 139320

Quiz 5

The condition number of the n×n identity matrix based on the row sum norm is

(A) 0

(B) 1

(C) n

(D) n2

Quiz 6

Let [A]=[12+δ2δ1]. Based on the row sum norm and given that δ0,δ>0, the condition number of the matrix is

(A) 3δ3+δ

(B) 9δ23δ2

(C) (3+δ)23δ2

(D) 32δδ23δ2

Adequacy of Solutions Exercise

Exercise 1

The adequacy of the solution of simultaneous linear equations depends on

  1. Condition number
  2. Machine epsilon
  3. Product of condition number and machine epsilon
  4. Norm of the matrix.
Answer

C

Exercise 2

If a system of equations [A] [X]=[C] is ill conditioned, then

  1. det(A)=0
  2. Cond(A)=1
  3. Cond(A) is large.
  4. A is large.
Answer

C

Exercise 3

If Cond(A)=104 and mach= 0.119 × 10-6, then in [A] [X]=[C], at least these many significant digits are correct in your solution,

  1. 0
  2. 1
  3. 2
  4. 3
Answer

C

Exercise 4

Make a small change in the coefficient matrix of [1223.999][xy]=[47.999]
and find
ΔX/XΔA/A

Is it a large or small number? How is this number related to the condition number of the coefficient matrix?

Answer

Changing [A] to

[1.0012.0012.0014.000]

Results in solution of

[59992999]

ΔXXΔAA=5999.720.0025.999

4=8.994×106$

Exercise 5

Make a small change in the coefficient matrix of
[1223][xy]=[4 7]
and find
ΔX/XΔA/A. Is it a large or a small number? Compare your results with the previous problem. How is this number related to the condition number of the coefficient matrix?

Answer

Changing [A] to

[1.0012.0012.0013.000]

Results in solution of

[2.0030.9970]

ΔXXΔAA=0.0032.0000.0025

=3.75

Exercise 6

Prove

ΔXX  A A1 ΔCC

Answer

Use theorem that if [A][B]=[C]then ABC

Exercise 7

For

[A]=[107032.0996515]

gives

[A]1=[0.10990.23330.27990.29990.33320.39990.049950.16666.664×105]

  1. What is the condition number of [A]?
  2. How many significant digits can we at least trust in the solution of [A] [X]=[C] if mach=0.1192×106?
  3. Without calculating the inverse of the matrix [A], can you estimate the condition number of [A] using the theorem in problem#6?
Answer

A. A=17
A1=1.033
Cond(A)=17.56

B. 5

C. Try different values of right hand side of C=[±1  ±1  ±1]T with signs chosen randomly. Then A1X obtained from solving equation set [A] [X]=[C] as C=1.

Exercise 8

Prove that the Cond(A)1.

Answer

We know that

A BAB

then if

[B]=[A]1,

A A1AA1

IAA1

1AA1

AA11

Cond(A)1


This page titled 9: Adequacy of Solutions is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Autar Kaw via source content that was edited to the style and standards of the LibreTexts platform.

Support Center

How can we help?