Skip to main content
Mathematics LibreTexts

2.2E: Matrix Addition, Scalar Multiplication, and Transposition Exercises

  • Page ID
    132801
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Exercises for 1

    Exercise \(\PageIndex{1}\)

    Find \(a\), \(b\), \(c\), and \(d\) if

    1. \(\left[ \begin{array}{cc} a & b \\ c & d \end{array} \right] = \left[ \begin{array}{cc} c - 3d & -d \\ 2a + d & a + b \end{array} \right]\)
    2. \(\left[ \begin{array}{cc} a - b & b - c \\ c - d & d - a \end{array} \right] = 2 \left[ \begin{array}{rr} 1 & 1 \\ -3 & 1 \end{array} \right]\)
    3. \(3 \left[ \begin{array}{c} a \\ b \end{array} \right] + 2 \left[ \begin{array}{rr} b \\ a \end{array} \right] = \left[ \begin{array}{rr} 1 \\ 2 \end{array} \right]\)
    4. \(\left[ \begin{array}{cc} a & b \\ c & d \end{array} \right] = \left[ \begin{array}{cc} b & c \\ d & a \end{array} \right]\)
    Answer
    1. \((a\ b\ c\ d) = (-2, -4, -6, 0) + t(1, 1, 1, 1)\),
    2. \(t\) arbitrary \(a = b = c = d = t\), \(t\) arbitrary
    Exercise \(\PageIndex{2}\)

    Compute the following:

    1. \( \left[\begin{array}{lll}3 & 2 & 1 \\5 & 1 & 0\end{array}\right]-5\left[\begin{array}{rrr}3 & 0 & -2 \\1 & -1 & 2\end{array}\right]\)
    2. \( 3\left[\begin{array}{r}3 \\-1\end{array}\right]-5\left[\begin{array}{l}6 \\2\end{array}\right]+7\left[\begin{array}{r}1 \\-1 \end{array}\right] \)
    3. \( \left[\begin{array}{rr}-2 & 1 \\3 & 2\end{array}\right]-4\left[\begin{array}{ll}1 & -2 \\0 & -1\end{array}\right]+3\left[\begin{array}{rr}2 & -3 \\-1 & -2\end{array}\right]\)
    4. \( \left[\begin{array}{lll}3 & -1 & 2\end{array}\right]-2\left[\begin{array}{lll}9 & 3 & 4\end{array}\right]+\left[\begin{array}{lll}3 & 11 & -6\end{array}\right]\)
    5. \( \left[\begin{array}{rrrr}1 & -5 & 4 & 0 \\2 & 1 & 0 & 6\end{array}\right]^T \)
    6. \( \left[\begin{array}{rrr}0 & -1 & 2 \\1 & 0 & -4 \\-2 & 4 & 0\end{array}\right]^T \)
    7. \( \left[\begin{array}{rr}3 & -1 \\2 & 1\end{array}\right]-2\left[\begin{array}{rr}1 & -2 \\1 & 1\end{array}\right]^T \)
    8. \( 3\left[\begin{array}{rr}2 & 1 \\-1 & 0\end{array}\right]^T-2\left[\begin{array}{rr}1 & -1 \\2 & 3\end{array}\right] \)
    Answer
    1. \(\left[ \begin{array}{r} -14 \\ -20 \end{array} \right]\) \((-12, 4, -12)\)
    2. \(\left[ \begin{array}{rrr} 0 & 1 & -2 \\ -1 & 0 & 4 \\ 2 & -4 & 0 \end{array} \right]\)
    3. \(\left[ \begin{array}{rr} 4 & -1 \\ -1 & -6 \end{array} \right]\)
    Exercise \(\PageIndex{3}\)

    Let \(A = \left[ \begin{array}{rr} 2 & 1 \\ 0 & -1 \end{array} \right]\),
    \(B = \left[ \begin{array}{rrr} 3 & -1 & 2 \\ 0 & 1 & 4 \end{array} \right]\), \(C = \left[ \begin{array}{rr} 3 & -1 \\ 2 & 0 \end{array} \right]\),
    \(D = \left[ \begin{array}{rr} 1 & 3 \\ -1 & 0 \\ 1 & 4 \end{array} \right]\), and \(E = \left[ \begin{array}{rrr} 1 & 0 & 1 \\ 0 & 1 & 0 \end{array} \right]\).

    Compute the following (where possible).

    1. \(3A - 2B\)
    2. \(5C\)
    3. \(3E^{T}\)
    4. \(B + D\)
    5. \(4A^{T} - 3C\)
    6. \((A + C)^{T}\)
    7. \(2B - 3E\)
    8. \(A - D\)
    9. ((B - 2E)^{T}\)
    Answer
    1. \(\left[ \begin{array}{rr} 15 & -5 \\ 10 & 0 \end{array} \right]\)
    2. Impossible
    3. \(\left[ \begin{array}{rr} 5 & 2 \\ 0 & -1 \end{array} \right]\)
    4. Impossible
    Exercise \(\PageIndex{4}\)

    Find \(A\) if:

    1. \(5A - \left[ \begin{array}{rr} 1 & 0 \\ 2 & 3 \end{array} \right] = 3A - \left[ \begin{array}{rr} 5 & 2 \\ 6 & 1 \end{array} \right]\)
    2. \(3A - \left[ \begin{array}{r} 2 \\ 1 \end{array} \right] = 5A - 2 \left[ \begin{array}{rr} 3 \\ 0 \end{array} \right]\)
    Answer

    b. \(\left[ \begin{array}{r} 2 \\ -\frac{1}{2} \end{array} \right]\)

    Exercise \(\PageIndex{5}\)

    Find \(A\) in terms of \(B\) if:

    1. \(A + B = 3A + 2B\)
    2. \(2A - B = 5(A + 2B)\)
    Answer

    b. \(A = -\frac{11}{3}B\)

    Exercise \(\PageIndex{6}\)

    If \(X\), \(Y\), \(A\), and \(B\) are matrices of the same size, solve the following systems of equations to obtain \(X\) and \(Y\) in terms of \(A\) and \(B\).

    1. \(5X + 3Y = A \\ 2X + Y = B\)
    2. \(4X + 3Y = A \\ 5X + 4Y = B\)
    Answer

    b. \(X = 4A - 3B\), \(Y = 4B - 5A\)

    Example \(\PageIndex{7}\)

    Find all matrices \(X\) and \(Y\) such that:

    1. \(3X - 2Y = \left[ \begin{array}{rr} 3 & - 1 \end{array} \right]\)
    2. \(2X - 5Y = \left[ \begin{array}{rr} 1 & 2 \end{array} \right]\)
    Solution

    \(Y = (s, t)\), \(X = \frac{1}{2}(1 + 5s, 2 + 5t)\); \(s\) and \(t\) arbitrary

    Exercise \(\PageIndex{8}\)

    Simplify the following expressions where \(A\), \(B\), and \(C\) are matrices.

    1. \(2 \left[ 9(A - B) + 7(2B - A) \right]\)
      \(- 2 \left[ 3(2B + A) - 2(A + 3B) - 5(A + B) \right]\)
    2. \(5 \left[ 3(A - B + 2C) - 2(3C - B) - A \right]\)
      \(+ 2 \left[ 3(3A - B + C) + 2(B - 2A) - 2C \right]\)
    Answer

    b. \(20A - 7B + 2C\)

    Exercise \(\PageIndex{9}\)

    If \(A\) is any \(2 \times 2\) matrix, show that:

    1. \(A = a \left[ \begin{array}{rr} 1 & 0 \\ 0 & 0 \end{array} \right] + b \left[ \begin{array}{rr} 0 & 1 \\ 0 & 0 \end{array} \right] + c \left[ \begin{array}{rr} 0 & 0 \\ 1 & 0 \end{array} \right] + d \left[ \begin{array}{rr} 0 & 0 \\ 0 & 1 \end{array} \right]\) for some numbers \(a\), \(b\), \(c\), and \(d\).
    2. \(A = p \left[ \begin{array}{rr} 1 & 0 \\ 0 & 1 \end{array} \right] + q \left[ \begin{array}{rr} 1 & 1 \\ 0 & 0 \end{array} \right] + r \left[ \begin{array}{rr} 1 & 0 \\ 1 & 0 \end{array} \right] + s \left[ \begin{array}{rr} 0 & 1 \\ 1 & 0 \end{array} \right]\) for some numbers \(p\), \(q\), \(r\), and \(s\).
    Answer

    b. If \(A = \left[ \begin{array}{cc} a & b \\ c & d \end{array} \right]\), then \((p, q, r, s) = \frac{1}{2}(2d, a + b - c - d, a - b + c - d, -a + b + c + d)\).

    Exercise \(\PageIndex{10}\)

    Let \(A = \left[ \begin{array}{rrr} 1 & 1 & -1 \end{array} \right]\),
    \(B = \left[ \begin{array}{rrr} 0 & 1 & 2 \end{array} \right]\), and \(C = \left[ \begin{array}{rrr} 3 & 0 & 1 \end{array} \right]\). If
    \(rA + sB + tC = 0\) for some scalars \(r\), \(s\), and \(t\), show that necessarily \(r = s = t = 0\).

    Exercise \(\PageIndex{11}\)
    1. If \(Q + A = A\) holds for every \(m \times n\) matrix \(A\), show that \(Q = 0_{mn}\).
    2. If \(A\) is an \(m \times n\) matrix and \(A + A^\prime = 0_{mn}\), show that \(A^\prime = -A\
    Answer

    b. If \(A + A^\prime = 0\) then \(-A = -A + 0 = -A + (A + A^\prime) = (-A + A) + A^\prime = 0 + A^\prime = A^\prime\)

    Exercise \(\PageIndex{12}\)

    If \(A\) denotes an \(m \times n\) matrix, show that \(A = -A\) if and only if \(A = 0\).

    Exercise \(\PageIndex{13}\)

    A square matrix is called a diagonal matrix if all the entries off the main diagonal are zero. If \(A\) and \(B\) are diagonal matrices, show that the following matrices are also diagonal.

    1. \(A + B\)
    2. \(A - B\)
    3. \(kA\) for any number \(k\)
    Answer

    Write \(A = \diag(a_{1}, \dots, a_{n})\), where \(a_{1}, \dots, a_{n}\) are the main diagonal entries. If \(B = \diag(b_{1}, \dots, b_{n})\) then \(kA = \diag(ka_{1}, \dots, ka_{n})\).

    Exercise \(\PageIndex{14}\)

    In each case determine all \(s\) and \(t\) such that the given matrix is symmetric:

    1. \(\left[ \begin{array}{rr} 1 & s \\ -2 & t \end{array} \right]\)
    2. \(\left[ \begin{array}{cc} s & t \\ st & 1 \end{array} \right]\)
    3. \(\left[ \begin{array}{crc} s & 2s & st \\ t & -1 & s \\ t & s^{2} & s \end{array} \right]\)
    4. \(\left[ \begin{array}{ccc} 2 & s & t \\ 2s & 0 & s + t \\ 3 & 3 & t \end{array} \right]\)
    Answer
    1. \(s = 1\) or \(t = 0\)
    2. \(s = 0\), and \(t = 3\)
    Exercise \(\PageIndex{15}\)

    In each case find the matrix \(A\).

    1. \(\left(A + 3 \left[ \begin{array}{rrr} 1 & -1 & 0 \\ 1 & 2 & 4 \end{array} \right] \right)^{T} = \left[ \begin{array}{rr} 2 & 1 \\ 0 & 5 \\ 3 & 8 \end{array} \right]\)
    2. \(\left(3A^{T} + 2 \left[ \begin{array}{rr} 1 & 0 \\ 0 & 2 \end{array} \right] \right)^{T} = \left[ \begin{array}{rr} 8 & 0 \\ 3 & 1 \end{array} \right]\)
    3. \(\left(2A - 3 \left[ \begin{array}{rrr} 1 & 2 & 0 \end{array} \right] \right)^{T} = 3A^{T} + \left[ \begin{array}{rrr} 2 & 1 & -1 \end{array} \right]^{T}\)
    4. \(\left(2A^{T} - 5 \left[ \begin{array}{rr} 1 & 0 \\ -1 & 2 \end{array} \right] \right)^{T} = 4A - 9 \left[ \begin{array}{rr} 1 & 1 \\ -1 & 0 \end{array} \right]\)
    Answer
    1. \(\left[ \begin{array}{rr} 2 & 0 \\ 1 & -1 \end{array} \right]\)
    2. \(\left[ \begin{array}{rr} 2 & 7 \\ -\frac{9}{2} & -5 \end{array} \right]\)
    Exercise \(\PageIndex{16}\)

    Let \(A\) and \(B\) be symmetric (of the same size). Show that each of the following is symmetric.

    1. \((A - B)\)
    2. \(kA\) for any scalar \(k\)
    Answer
    1. \(A = A^{T}\),
    2. \((kA)^{T} = kA^{T} = kA\).
    Exercise \(\PageIndex{17}\)

    Show that \(A + A^{T}\) is symmetric for any square matrix \(A\).

    Exercise \(\PageIndex{18}\)

    If \(A\) is a square matrix and \(A = kA^{T}\) where \(k \neq \pm 1\), show that \(A = 0\).

    Exercise \(\PageIndex{19}\)

    In each case either show that the statement is true or give an example showing it is false.

    1. If \(A + B = A + C\), then \(B\) and \(C\) have the same size.
    2. If \(A + B = 0\), then \(B = 0\).
    3. If the \((3, 1)\)-entry of \(A\) is \(5\), then the \((1, 3)\)-entry of \(A^{T}\) is \(-5\).
    4. \(A\) and \(A^{T}\) have the same main diagonal for every matrix \(A\).
    5. If \(B\) is symmetric and \(A^{T} = 3B\), then \(A = 3B\).
    6. If \(A\) and \(B\) are symmetric, then \(kA + mB\) is symmetric for any scalars \(k\) and \(m\).
    Answer
    1. False. Take \(B = -A\) for any \(A \neq 0\).
    2. True. Transposing fixes the main diagonal.
    3. True. \((kA + mB)^{T} = (kA)^{T} + (mB)^{T} = kA^{T} + mB^{T} = kA + mB\)
    Exercise \(\PageIndex{20}\)

    A square matrix \(W\) is called skew-symmetric if \(W^{T} = -W\). Let \(A\) be any square matrix.

    1. Show that \(A - A^{T}\) is skew-symmetric.
    2. Find a symmetric matrix \(S\) and a skew-symmetric matrix \(W\) such that \(A = S + W\).
    3. Show that \(S\) and \(W\) in part (b) are uniquely determined by \(A\).
    Answer

    c. Suppose \(A = S + W\), where \(S = S^{T}\) and \(W = -W^{T}\). Then \(A^{T} = S^{T} + W^{T} = S - W\), so \(A + A^{T} = 2S\) and \(A - A^{T} = 2W\). Hence \(S = \frac{1}{2}(A + A^{T})\) and \(W = \frac{1}{2}(A - A^{T})\) are uniquely determined by \(A\).

    Exercise \(\PageIndex{21}\)

    If \(W\) is skew-symmetric (Exercise \(\PageIndex{20}\)), show that the entries on the main diagonal are zero.

    Exercise \(\PageIndex{22}\)

    Prove the following parts of Theorem [thm:002170].

    1. \((k + p)A = kA + pA\)
    2. \((kp)A = k(pA)\)
    Answer

    b. If \(A = \left[ a_{ij} \right]\) then \((kp)A = \left[ (kp)a_{ij} \right] = \left[ k(pa_{ij}) \right] = k \left[ pa_{ij} \right] = k(pA)\).

    Exercise \(\PageIndex{23}\)

    Let \(A, A_{1}, A_{2}, \dots, A_{n}\) denote matrices of the same size. Use induction on \(n\) to verify the following extensions of properties 5 and 6 of Theorem \(\PageIndex{1}\).

    1. (k(A_{1} + A_{2} + \dots + A_{n}) = kA_{1} + kA_{2} + \dots + kA_{n}\) for any number \(k\)
    2. \((k_{1} + k_{2} + \dots + k_{n})A = k_{1}A + k_{2}A + \dots + k_{n}A\) for any numbers \(k_{1}, k_{2}, \dots, k_{n}\)
    Example \(\PageIndex{1}\)

    Let \(A\) be a square matrix. If \(A = pB^{T}\) and \(B = qA^{T}\) for some matrix \(B\) and numbers \(p\) and \(q\), show that either \(A = 0 = B\) or \(pq = 1\).


    2.2E: Matrix Addition, Scalar Multiplication, and Transposition Exercises is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?