Skip to main content
Mathematics LibreTexts

40.1: Linear Systems

  • Page ID
    70541
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    In this course, we learned how to represent linear systems which basically consists of equations added sums of multiple numbers in the form:

    \[b = a_1x_1+a_2x_2+a_3x_3 + \ldots a_mx_m \nonumber \]

    Systems of linear equations are multiple equations of the above form with basically the same unknowns but different values of \(a\) and \(b\).

    \[b_1 = a_{11}x_1+a_{12}x_2+a_{13}x_3 + \ldots a_{1n}x_n \nonumber \]

    \[b_2 = a_{21}x_1+a_{22}x_2+a_{23}x_3 + \ldots a_{2n}x_n \nonumber \]

    \[b_3 = a_{31}x_1+a_{32}x_2+a_{33}x_3 + \ldots a_{3n}x_n \nonumber \]

    \[\vdots \nonumber \]

    \[b_m = a_{m1}x_1+a_{m2}x_2+a_{m3}x_3 + \ldots a_{mn}x_n \nonumber \]

    The above equations can be represented in matrix form as follows:

    \[\begin{split}
    \left[
    \begin{matrix}
    b_1 \\
    b_2 \\
    b_3 \\
    \vdots \\
    b_m
    \end{matrix}
    \right]
    =
    \left[
    \begin{matrix}
    a_{11} & a_{12} & a_{13} & & a_{1n} \\
    a_{21} & a_{22} & a_{23} & \ldots & a_{2n} \\
    a_{31} & a_{32} & a_{33} & & a_{3n} \\
    & \vdots & & \ddots & \vdots \\
    a_{m1} & a_{m2} & a_{m3} & & a_{mn}
    \end{matrix}
    \right]
    \left[
    \begin{matrix}
    x_1 \\
    x_2 \\
    x_3 \\
    \vdots \\
    x_n
    \end{matrix}
    \right]
    \end{split} \nonumber \]

    Which can also be represented in “augmented” form as follows:

    \[\begin{split}
    \left[
    \begin{matrix}
    a_{11} & a_{12} & a_{13} & & a_{1n} \\
    a_{21} & a_{22} & a_{23} & \ldots & a_{2n} \\
    a_{31} & a_{32} & a_{33} & & a_{3n} \\
    & \vdots & & \ddots & \vdots \\
    a_{m1} & a_{m2} & a_{m3} & & a_{mn}
    \end{matrix}
    \, \middle\vert \,
    \begin{matrix}
    b_1 \\
    b_2 \\
    b_3 \\
    \vdots \\
    b_m
    \end{matrix}
    \right]
    \end{split} \nonumber \]

    The above systems can be modified into equivelent systems using combinations of the following operators.

    1. Multiply any row of a matrix by a constant
    2. Add the contents of one row by another row.
    3. Swap any two rows.

    Often the 1st and 2nd operator can be combined where a row is multipled by a constanet and then added (or subtracted) from another row.

    Question

    Consider the matrix \(A= \left[\begin{matrix} 1 & 3 \\ 0 & 2 \end{matrix}\right]\). What operators can you use to put the above equation into it’s reduced row echelon form?


    This page titled 40.1: Linear Systems is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Dirk Colbry via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

    • Was this article helpful?