Loading [MathJax]/extensions/TeX/boldsymbol.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

1.4.1: Exercises 1.4

( \newcommand{\kernel}{\mathrm{null}\,}\)

Terms and Concepts

Exercise \PageIndex{1}

Do exponent rules apply to root functions? Explain.

Answer

Yes, a root function is just a power function with a fractional exponent.

Exercise \PageIndex{2}

Explain why a negative exponents moves the term to the denominator and gives it a positive exponent.

Answer

A positive exponent means we are multiplying that term repeatedly, a negative exponent means we are dividing by that term repeatedly.

Exercise \PageIndex{3}

Is 3x(2x+3)^{-5/3} in radical or exponential form?

Answer

Exponential form

Exercise \PageIndex{4}

Is \displaystyle \frac{3x}{\sqrt[3]{(2x+3)^5}} in radical or exponential form?

Answer

Radical form

Problems

In exercises \PageIndex{5} - \PageIndex{7}, write the given term without using exponents.

Exercise \PageIndex{5}

\displaystyle (8x_1-5x_2+11)^{-1/3}

Answer

\displaystyle \frac{1}{\sqrt[3]{8x_1-5x_2+11}}

Exercise \PageIndex{6}

\displaystyle (-2x+y)^{-1/5}

Answer

\displaystyle \frac{1}{\sqrt[5]{-2x+y}}

Exercise \PageIndex{7}

\displaystyle (5x-2)^{1/4}

Answer

\displaystyle \sqrt[4]{5x-2}

In exercises \PageIndex{8} - \PageIndex{10}, simplify and write the given term without using radicals.

Exercise \PageIndex{8}

\displaystyle \Bigg( \sqrt{x} + \frac{1}{\sqrt{x}} \Bigg)^2

Answer

\displaystyle x + 2 + \frac{1}{x}

Exercise \PageIndex{9}

\displaystyle (\sqrt{x})^2 + \Bigg(\frac{1}{\sqrt{x}} \Bigg)^2

Answer

\displaystyle x + \frac{1}{x}

Exercise \PageIndex{10}

\displaystyle \Bigg(\sqrt[3]{x} +1 \Bigg)^3

Answer

\displaystyle x + 3x^{2/3} + 3x^{1/3} + 1

In exercises \PageIndex{11} - \PageIndex{17}, simplify the given term and write your answer without negative exponents.

Exercise \PageIndex{11}

\displaystyle \Bigg( \frac{-5x^{-1/4}y^3}{x^{1/4}y^{1/2}}\Bigg)^2

Answer

\displaystyle \frac{25y^5}{x}, y \neq 0

Exercise \PageIndex{12}

\displaystyle \Bigg( \frac{-2x^{2/3}y^2}{x^{-2}y^{1/2}}\Bigg)^6

Answer

\displaystyle 64x^{16}y^9; x,y \neq 0

Exercise \PageIndex{13}

\displaystyle \Bigg( \frac{-3s^{2/3}t^2}{4s^3t^{5/3}}\Bigg)^3

Answer

\displaystyle \frac{-27t}{64s^7}, t\neq 0

Exercise \PageIndex{14}

\displaystyle -3(x^2+4x+4)^{-4}(2x+4)

Answer

\displaystyle \frac{-6}{(x+2)^7}

Exercise \PageIndex{15}

\displaystyle \frac{1}{3}(x^4)^{-2/3}(4x^3)

Answer

\displaystyle \frac{4x^{1/3}}{3}

Exercise \PageIndex{16}

\displaystyle \frac{(e^{x+3})^2}{e^{-x}}

Answer

\displaystyle e^{3x+6}

Exercise \PageIndex{17}

\displaystyle \frac{e^{x^2-1}}{e^{x+1}}

Answer

\displaystyle e^{x^2-x-2}

In exercises \PageIndex{18} - \PageIndex{20}, simplify and write the given term in exponential form.

Exercise \PageIndex{18}

\displaystyle \frac{4x-1}{\sqrt[3]{(3x+2)^2}}

Answer

\displaystyle (4x-1)(3x+2)^{-2/3}

Exercise \PageIndex{19}

\displaystyle \sqrt[3]{\Bigg(\frac{e^{4\theta-6}y^2}{e^{\theta}y^{-4}}\Bigg)}

Answer

\displaystyle e^{\theta-2}y^2, y \neq 0

Exercise \PageIndex{20}

\displaystyle \sqrt[4]{\Bigg(\frac{x^2y^5}{y^{-3}}\Bigg)^2}

Answer

\displaystyle xy^4, y\neq 0


This page titled 1.4.1: Exercises 1.4 is shared under a CC BY-NC license and was authored, remixed, and/or curated by Amy Givler Chapman, Meagan Herald, Jessica Libertini.

Support Center

How can we help?