3.6E: Complex Zeros (Exercises)
( \newcommand{\kernel}{\mathrm{null}\,}\)
section 3.6 exercise
Simplify each expression to a single complex number.
1. √−9
2. √−16
3. √−6√−24
4. √−3√−75
5. 2+√−122
6. 4+√−202
Simplify each expression to a single complex number.
7. (3+2i)+(5−3i)
8. (−2−4i)+(1+6i)
9. (−5+3i)−(6−i)
10. (2−3i)−(3+2i)
11. (2+3i)(4i)
12. (5−2i)(3i)
13. (6−2i)(5)
14. (−2+4i)(8)
15. (2+3i)(4−i)
16. (−1+2i)(−2+3i)
17. (4−2i)(4+2i)
18. (3+4i)(3−4i)
19. 3+4i2
20. 6−2i3
21. −5+3i2i
22. 6+4ii
23. 2−3i4+3i
24. 3+4i2−i
Find all of the zeros of the polynomial then completely factor it over the real numbers and completely factor it over the complex numbers.
25. f(x)=x2−4x+13
26. f(x)=x2−2x+5
27. f(x)=3x2+2x+10
28. f(x)=x3−2x2+9x−18
29. f(x)=x3+6x2+6x+5
30. f(x)=3x3−13x2+43x−13
31. f(x)=x3+3x2+4x+12
32. f(x)=4x3−6x2−8x+15
33. f(x)=x3+7x2+9x−2
34. f(x)=9x3+2x+1
35. f(x)=4x4−4x3+13x2−12x+3
36. f(x)=2x4−7x3+14x2−15x+6
37. f(x)=x4+x3+7x2+9x−18
38. f(x)=6x4+17x3−55x2+16x+12
39. f(x)=−3x4−8x3−12x2−12x−5
40. f(x)=8x4+50x3+43x2+2x−4
41. f(x)=x4+9x2+20
42. f(x)=x4+5x2−24
- Answer
-
1. 3i
3. -12
5. 1+√3i
7. 8−i
9. −11+4i
11. −12+8i
13. 30−10i
15. 11+10i
17. 20
19. 32+2i
21. 32+52i
23. −125−1825i
25. f(x)=x2−4x+13=(x−(2+3i))(x−(2−3i)). Zeros: x=2±3i
27. f(x)=3x2+2x+10=3(x−(−13+√293i))(x−(−13−√293i)). Zeros: x=−13±√293i
29. f(x)=x3+6x2+6x+5=(x+5)(x2+x+1)=(x+5)(x−(−12+√32i))(x−(−12−√32i)) Zeros: x=−5, x=−12±√32i
31. f(x)=x3+3x2+4x+12=(x+3)(x2+4)=(x+3)(x+2i)(x−2i). Zeros: x=−3,±2i
33. f(x)=x3+7x2+9x−2=(x+2)(x−(−52+√292))(x−(−52−√292)) Zeros: x=−2, x=−52±√292
35. f(x)=4x4−4x3+13x2−12x+3=(x−12)2(4x2+12)=4(x−12)2(x+i√3)(x−i√3) Zeros: x=12,x=±√3i
37. f(x)=x4+x3+7x2+9x−18=(x+2)(x−1)(x2+9)=(x+2)(x−1)(x+3i)(x−3i) Zeros: x=−2,1,±3i
39. f(x)=−3x4−8x3−12x2−12x−5=(x+1)2(−3x2−2x−5)=−3(x+1)2(x−(−13+√143i))(x−(−13−√143i)) Zeors: x=−1, x=−13±√143i
41. f(x)=x4+9x2+20=(x2+4)(x2+5)=(x−2i)(x+2i)(x−i√5)(x+i√5) Zeros: x=±2i,±i√5