Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

3.6E: Complex Zeros (Exercises)

( \newcommand{\kernel}{\mathrm{null}\,}\)

section 3.6 exercise

Simplify each expression to a single complex number.

1. 9

2. 16

3. 624

4. 375

5. 2+122

6. 4+202

Simplify each expression to a single complex number.

7. (3+2i)+(53i)

8. (24i)+(1+6i)

9. (5+3i)(6i)

10. (23i)(3+2i)

11. (2+3i)(4i)

12. (52i)(3i)

13. (62i)(5)

14. (2+4i)(8)

15. (2+3i)(4i)

16. (1+2i)(2+3i)

17. (42i)(4+2i)

18. (3+4i)(34i)

19. 3+4i2

20. 62i3

21. 5+3i2i

22. 6+4ii

23. 23i4+3i

24. 3+4i2i

Find all of the zeros of the polynomial then completely factor it over the real numbers and completely factor it over the complex numbers.

25. f(x)=x24x+13

26. f(x)=x22x+5

27. f(x)=3x2+2x+10

28. f(x)=x32x2+9x18

29. f(x)=x3+6x2+6x+5

30. f(x)=3x313x2+43x13

31. f(x)=x3+3x2+4x+12

32. f(x)=4x36x28x+15

33. f(x)=x3+7x2+9x2

34. f(x)=9x3+2x+1

35. f(x)=4x44x3+13x212x+3

36. f(x)=2x47x3+14x215x+6

37. f(x)=x4+x3+7x2+9x18

38. f(x)=6x4+17x355x2+16x+12

39. f(x)=3x48x312x212x5

40. f(x)=8x4+50x3+43x2+2x4

41. f(x)=x4+9x2+20

42. f(x)=x4+5x224

Answer

1. 3i

3. -12

5. 1+3i

7. 8i

9. 11+4i

11. 12+8i

13. 3010i

15. 11+10i

17. 20

19. 32+2i

21. 32+52i

23. 1251825i

25. f(x)=x24x+13=(x(2+3i))(x(23i)). Zeros: x=2±3i

27. f(x)=3x2+2x+10=3(x(13+293i))(x(13293i)). Zeros: x=13±293i

29. f(x)=x3+6x2+6x+5=(x+5)(x2+x+1)=(x+5)(x(12+32i))(x(1232i)) Zeros: x=5, x=12±32i

31. f(x)=x3+3x2+4x+12=(x+3)(x2+4)=(x+3)(x+2i)(x2i). Zeros: x=3,±2i

33. f(x)=x3+7x2+9x2=(x+2)(x(52+292))(x(52292)) Zeros: x=2, x=52±292

35. f(x)=4x44x3+13x212x+3=(x12)2(4x2+12)=4(x12)2(x+i3)(xi3) Zeros: x=12,x=±3i

37. f(x)=x4+x3+7x2+9x18=(x+2)(x1)(x2+9)=(x+2)(x1)(x+3i)(x3i) Zeros: x=2,1,±3i

39. f(x)=3x48x312x212x5=(x+1)2(3x22x5)=3(x+1)2(x(13+143i))(x(13143i)) Zeors: x=1, x=13±143i

41. f(x)=x4+9x2+20=(x2+4)(x2+5)=(x2i)(x+2i)(xi5)(x+i5) Zeros: x=±2i,±i5


This page titled 3.6E: Complex Zeros (Exercises) is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by David Lippman & Melonie Rasmussen (The OpenTextBookStore) via source content that was edited to the style and standards of the LibreTexts platform.

  • Was this article helpful?

Support Center

How can we help?