Skip to main content
Mathematics LibreTexts

4.5E: Graphs of Logarithmic Functions (Exercises)

  • Page ID
    13909
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    section 4.5 exercise

    For each function, find the domain and the vertical asymptote.

    1. \(f\left(x\right)=\log \left(x-5\right)\)

    2. \(f\left(x\right)=\log \left(x+2\right)\)

    3. \(f\left(x\right)=\ln \left(3-x\right)\)

    4. \(f\left(x\right)=\ln \left(5-x\right)\)

    5. \(f\left(x\right)=\log \left(3x+1\right)\)

    6. \(f\left(x\right)=\log \left(2x+5\right)\)

    7. \(f\left(x\right)=3\log \left(-x\right)+2\)

    8. \(f\left(x\right)=2\log \left(-x\right)+1\)

    Sketch a graph of each pair of functions.

    9. \(f\left(x\right)=\log \left(x\right),\; g\left(x\right)=\ln \left(x\right)\)

    10. \(f\left(x\right)=\log _{2} (x),\; g\left(x\right)=\log _{4} \left(x\right)\)

    Sketch each transformation.

    11. \(f\left(x\right)=2\log \left(x\right)\)

    12. \(f\left(x\right)=3\ln \left(x\right)\)

    13. \(f\left(x\right)=\ln \left(-x\right)\)

    14. \(f\left(x\right)=-\log \left(x\right)\)

    15. \(f\left(x\right)=\log _{2} (x+2)\)

    16. f\left(x\right)=\log _{3} \left(x+4\right)\]

    Find a formula for the transformed logarithm graph shown.

    17. 屏幕快照 2019-06-26 下午6.26.37.png18. 屏幕快照 2019-06-26 下午6.28.07.png

    19. 屏幕快照 2019-06-26 下午6.28.25.png20. 屏幕快照 2019-06-26 下午6.28.40.png

    Find a formula for the transformed logarithm graph shown.

    21. 屏幕快照 2019-06-26 下午6.29.08.png22.屏幕快照 2019-06-26 下午6.29.26.png

    23. 屏幕快照 2019-06-26 下午6.29.43.png24.屏幕快照 2019-06-26 下午6.30.01.png

    Answer

    1. Domain: \(x > 5\) V. A. @ \(x = 5\)

    3. Domain: \(x < 5\) V. A. @ \(x = 3\)

    5. Domain: \(x > -\dfrac{1}{3}\) V. A. @ \(x = -\dfrac{1}{3}\)

    7. Domain: \(x < 0\) V. A. @ \(x = 0\)

    9. Screen Shot 2019-10-04 at 2.47.23 PM.png

    11. Screen Shot 2019-10-04 at 2.47.40 PM.png

    13. Screen Shot 2019-10-04 at 2.47.56 PM.png

    15. Screen Shot 2019-10-04 at 2.48.16 PM.png

    17. \(y = \dfrac{1}{\text{log}(2)} \text{log} (-(x - 1))\)

    19. \(y = -\dfrac{3}{\text{log}(3)} \text{log}(x + 4)\)

    21. \(y = \dfrac{3}{\text{log}(4)} \text{log}(x + 2)\)

    23. \(y = -\dfrac{2}{\text{log}(5)} \text{log}(-(x - 5))\)


    This page titled 4.5E: Graphs of Logarithmic Functions (Exercises) is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by David Lippman & Melonie Rasmussen (The OpenTextBookStore) via source content that was edited to the style and standards of the LibreTexts platform.