7.1E: Solving Trigonometric Equations with Identities (Exercises)
( \newcommand{\kernel}{\mathrm{null}\,}\)
Section 7.1 Exercises
Find all solutions on the interval 0≤θ<2π.
1. 2sin(θ)=−1
2. 2sin(θ)=√3
3. 2cos(θ)=1
4. 2cos(θ)=−√2
Find all solutions.
5. 2sin(π4x)=1
6. 2sin(π3x)=√2
7. 2cos(2t)=−√3
8. 2cos(3t)=−1
9. 3cos(π5x)=2
10. 8cos(π2x)=6
11. \(7\sin \left(3t\right)=-2
12. 4\sin \left(4t\right)=1\)
Find all solutions on the interval [0,2π).
13. 10sin(x)cos(x)=6cos(x)
14. −3sin(t)=15cos(t)sin(t)
15. csc(2x)−9=0
16. sec(2θ)=3
17. sec(x)sin(x)−2sin(x)=0
18. tan(x)sin(x)−sin(x)=0
19. sin2x=14
20. cos2θ=12
21. sec2x=7
22. csc2t=3
23. 2sin2w+3sinw+1=0
24. 8sin2x+6sin(x)+1=0
25. 2cos2t+cos(t)=1
26. 8cos2(θ)=3−2cos(θ)
27. 4cos2(x)−4=15cos(x)
28. 9sin(w)−2=4sin2(w)
29. 12sin2(t)+cos(t)−6=0
30. 6cos2(x)+7sin(x)−8=0
31. cos2ϕ=−6sinϕ
32. sin2t=cost
33. tan3(x)=3tan(x)
34. cos3(t)=−cos(t)
35. tan5(x)=tan(x)
36. tan5(x)−9tan(x)=0
37. 4sin(x)cos(x)+2sin(x)−2cos(x)−1=0
38. 2sin(x)cos(x)−sin(x)+2cos(x)−1=0
39. tan(x)−3sin(x)=0
40. 3cos(x)=cot(x)
41. 2tan2(t)=3sec(t)
42. 1−2tan(w)=tan2(w)
- Answer
-
1. 7π6, 11π6
3. π3, 5π3
5. 23+8k, and 103+8k, where k is an integer
7. 5π12+kπ and 7π12+kπ, where k is an integer
9. 0.1339+10k and 8.6614+10k, where k is an integer
11. 1.1438+2π3k and 1.9978+2π3k, where k is an integer
13. π2, 3π2, 0.644, 2.498
15. 0.056, 1.515, 3.197, 4.647
17. 0, π, π3, 5π3
19. π6, 5π6, 7π6, 11π6
21. 1.183, 1.958, 4.325, 5.100
23. 3π2, 7π6, 11π6
25. π, π3, 5π3
27. 1.823, 4.460
29. 2.301, 3.983, 0.723, 5.560
31. 3.305, 6.120
33. 0, π3, 2π3, π, 4π3, 5π3
35. 0, π4, 3π4, π, 5π4, 7π4
37. π6, 2π3, 5π6, 4π3
39. 0, π, 1.231, 5.052
41. π3, 5π3