# 3: Graphs

$$\newcommand{\vecs}{\overset { \rightharpoonup} {\mathbf{#1}} }$$ $$\newcommand{\vecd}{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}{\| #1 \|}$$ $$\newcommand{\inner}{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}{\| #1 \|}$$ $$\newcommand{\inner}{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$$$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

## Learning Objectives

• Interpret, from function notation, an action or several actions to be taken on a known function, $$f$$, in order to sketch the transformed function.
• Sketch transformations from $$9$$ familiar functions.
• Write the equation of a function associated with descriptive transformations such as shifting left, right, up, or down, reflecting, stretching, and compressing of its parent function.

• 3.1: Transformations of f(x)
In this section, you will practice manipulating a given graph, according to the corresponding function notation. We’ll use the function f for demonstration throughout this section. But any graph will do!
• 3.2: Transformations of Common Graphs
The transformation of graphs, using common functions, will be a skill that will bring insight to graphing functions quickly and painlessly. Anticipating how a graph of a function will look, and transforming old graphs to new graphs, is a skill we will explore in this section. Mastering this skill will give you a leg up on understanding analytic geometry, a key component to calculus.

This page titled 3: Graphs is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Jennifer Freidenreich.