8.4: Exercises
( \newcommand{\kernel}{\mathrm{null}\,}\)
Divide by long division.
- x3−4x2+2x+1x−2
- x3+6x2+7x−2x+3
- x2+7x−4x+1
- x3+3x2+2x+5x+2
- 2x3+x2+3x+5x−1
- 2x4+7x3+x+3x+5
- 2x4−31x2−13x−4
- x3+27x+3
- 3x4+7x3+5x2+7x+43x+1
- 8x3+18x2+21x+182x+3
- x3+3x2−4x−5x2+2x+1
- x5+3x4−20x2+3
- Answer
-
- x2−2x−2−3x−2
- x2+3x−2+4x+3
- x+6−10x+1
- x2+x+5x+2
- 2x2+3x+6+11x−1
- 2x3−3x2+15x−74+373x+5
- 2x3+8x2+x+4+3x−4
- x2−3x+9
- x3+2x2+x+2+23x+1
- 4x2+3x+6
- x+1−7x+6x2+2x+1
- x3+3x2−3x−9+9x+7x2+3
Find the remainder when dividing f(x) by g(x).
- f(x)=x3+2x2+x−3,g(x)=x−2
- f(x)=x3−5x+8,g(x)=x−3
- f(x)=x5−1,g(x)=x+1
- f(x)=x5+5x2−7x+10,g(x)=x+2
- Answer
-
- remainder r=15
- r=20
- r=−2
- r=12
Determine whether the given g(x) is a factor of f(x). If so, name the corresponding root of f(x).
- f(x)=x2+5x+6,g(x)=x+3
- f(x)=x3−x2−3x+8,g(x)=x−4
- f(x)=x4+7x3+3x2+29x+56,g(x)=x+7
- f(x)=x999+1,g(x)=x+1
- Answer
-
- yes, g(x) is a factor of f(x), the root of f(x) is x=−3
- g(x) is not a factor of f(x)
- g(x) is a factor of f(x), the root of f(x) is x=−7
- g(x) is a factor of f(x), the root of f(x) is x=−1
Check that the given numbers for x are roots of f(x) (see Observation). If the numbers x are indeed roots, then use this information to factor f(x) as much as possible.
- f(x)=x3−2x2−x+2,x=1
- f(x)=x3−6x2+11x−6,x=1,x=2,x=3
- f(x)=x3−3x2+x−3,x=3
- f(x)=x3+6x2+12x+8,x=−2
- f(x)=x3+13x2+50x+56,x=−3,x=−4
- f(x)=x3+3x2−16x−48,x=2,x=−4
- f(x)=x5+5x4−5x3−25x2+4x+20,x=1,x=−1,x=2,x=−2
- Answer
-
- f(x)=(x−2)(x−1)(x+1)
- f(x)=(x−1)(x−2)(x−3)
- f(x)=(x−3)(x−i)(x+i)
- f(x)=(x+2)3
- f(x)=(x+2)(x+4)(x+7)
- f(x)=(x−4)(x+3)(x+4)
- f(x)=(x−2)(x−1)(x+1)(x+2)(x+5)
Divide by using synthetic division.
- 2x3+3x2−5x+7x−2
- 4x3+3x2−15x+18x+3
- x3+4x2−3x+1x+2
- x4+x3+1x−1
- x5+32x+2
- x3+5x2−3x−10x+5
- Answer
-
- 2x2+7x+9+25x−2
- 4x2−9x+12−18x+3
- x2+2x−7+15x+2
- x3+2x2+2x+2+3x−1
- x4−2x3+4x2−8x+16
- x2−3+5x+5