22.3: Exercises
( \newcommand{\kernel}{\mathrm{null}\,}\)
Graph the vectors in the plane.
- \overrightarrow{PQ} with P(2,1) and Q(4,7)
- \overrightarrow{PQ} with P(-3,3) and Q(-5,-4)
- \overrightarrow{PQ} with P(0,-4) and Q(6,0)
- \langle -2,4 \rangle
- \langle -3,-3 \rangle
- \langle 5,5\sqrt{2} \rangle
- Answer
-
Find the magnitude and directional angle of the vector.
- \langle 6,8\rangle
- \langle -2,5 \rangle
- \langle -4,-4\rangle
- \langle 3,-3\rangle
- \langle 2,-2 \rangle
- \langle 4\sqrt{3},4\rangle
- \langle -\sqrt{3},-1\rangle
- \langle -4,4\sqrt{3}\rangle
- \langle -2\sqrt{3},-2\rangle
- \overrightarrow{PQ}, where P(3,1) and Q(7,4)
- \overrightarrow{PQ}, where P(4,-2) and Q(-5,7)
- Answer
-
- 10,53^{\circ}
- \sqrt{29}, 112^{\circ}
- 4 \sqrt{2}, 225^{\circ}
- 3 \sqrt{2},-45^{\circ}
- 2 \sqrt{2},-45^{\circ}
- 8,30^{\circ}
- 2,210^{\circ}
- 8,120^{\circ}
- 4,210^{\circ}
- 5,37^{\circ}
- 9 \sqrt{2}, 135^{\circ}
Perform the operation on the vectors.
- 5\cdot \langle 3,2\rangle
- 2\cdot \langle -1,4 \rangle
- (-10)\cdot \langle -\dfrac{3}{2},-\dfrac{7}{5} \rangle
- \langle2,3\rangle+\langle 6,1\rangle
- \langle 5,-4\rangle-\langle -8,-9\rangle
- 3\cdot \langle 5,3\rangle+4\cdot \langle 2,8\rangle
- (-2) \langle -5,-4\rangle-6\langle -1,-2\rangle
- \dfrac 2 3 \langle-3,6\rangle-\dfrac 7 5\langle10,-15\rangle
- \sqrt{2}\cdot \langle \dfrac{\sqrt{8}}{6},\dfrac{-5\sqrt{2}}{12} \rangle-2\langle\dfrac 2 3,\dfrac 5 3\rangle
- 6\vec{i}-4\vec{j}
- -5\vec{i}+\vec{j}+3\vec{i}
- 3\cdot\langle-4,2\rangle-8\vec{j}+12\vec{i}
- Find 4\vec{v}+7\vec{w} for \vec{v}=\langle 2,3 \rangle and \vec{w}=\langle 5,1\sqrt{3} \rangle
- Find \vec{v}-2\vec{w} for \vec{v}=\langle -11,-6 \rangle and \vec{w}=\langle -3,2 \rangle
- Find 3\vec{v}-\vec{w} for \vec{v}=-4\vec{i}+7\vec{j} and \vec{w}=6\vec{i}+\vec{j}
- Find -\vec{v}-\sqrt{5}\vec{w} for \vec{v}=5\vec{j} and \vec{w}=-8\vec{i}+\sqrt{5}\vec{j}
- Answer
-
- \langle 15,10\rangle
- \langle-2,8\rangle
- \langle 15,14\rangle
- \langle 8,4\rangle
- \langle 13,5\rangle
- \langle 23,41\rangle
- \langle 16,20\rangle
- \langle-16,25\rangle
- \left\langle-\dfrac{2}{3},-\dfrac{25}{6}\right\rangle
- \langle 6,-4\rangle
- \langle-2,1\rangle
- \langle 0,-2\rangle
- \langle 43,12+7 \sqrt{3}\rangle
- \langle-5,-10\rangle
- \langle-18,20\rangle
- \langle 8 \sqrt{5},-10\rangle
Find a unit vector in the direction of the given vector.
- \langle 8,-6 \rangle
- \langle -3,-\sqrt{7} \rangle
- \langle 9,2 \rangle
- \langle -\sqrt{5},\sqrt{31} \rangle
- \langle 5\sqrt{2},3\sqrt{10} \rangle
- \langle 0,-\dfrac{3}{5} \rangle
- Answer
-
- \left\langle\dfrac{4}{5},-\dfrac{3}{5}\right\rangle
- \left\langle-\dfrac{3}{4},-\dfrac{\sqrt{7}}{4}\right\rangle
- \left\langle\dfrac{9 \sqrt{85}}{85}, \dfrac{2 \sqrt{85}}{85}\right\rangle
- \left\langle-\dfrac{\sqrt{5}}{6}, \dfrac{\sqrt{31}}{6}\right\rangle
- \left\langle\dfrac{5 \sqrt{70}}{70}, \dfrac{3 \sqrt{14}}{14}\right\rangle
- \langle 0,-1\rangle
The vectors \vec{v_1} and \vec{v_2} below are being added. Find the approximate magnitude and directional angle of sum \vec{v}=\vec{v_1}+\vec{v_2} (see Example 22.2.4).
- ||\vec{v_1}||=6, and \theta_1=60^\circ, and ||\vec{v_2}||=2, and \theta_2=180^\circ
- ||\vec{v_1}||=3.7, and \theta_1=92^\circ, and ||\vec{v_2}||=2.2, and \theta_2=253^\circ
- ||\vec{v_1}||=8, and \theta_1=\dfrac{3\pi}{4}, and ||\vec{v_2}||=8\sqrt{2}, and \theta_2=\dfrac{3\pi}{2}
- Answer
-
- \vec{v}=\langle 1,3 \sqrt{3}\rangle,\|\vec{v}\|=2 \sqrt{7}, \theta \approx 79^{\circ}
- \vec{v} \approx\langle-.772,1.594\rangle,\|\vec{v}\| \approx 7.63, \theta \approx 116^{\circ}
- \vec{v}=\langle-4 \sqrt{2},-4 \sqrt{2}\rangle,\|v\|=8, \theta=225^{\circ}=\dfrac{5 \pi}{4}