Skip to main content
Mathematics LibreTexts

22.3: Exercises

  • Page ID
    54474
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Exercise \(\PageIndex{1}\)

    Graph the vectors in the plane.

    1. \(\overrightarrow{PQ}\) with \(P(2,1)\) and \(Q(4,7)\)
    2. \(\overrightarrow{PQ}\) with \(P(-3,3)\) and \(Q(-5,-4)\)
    3. \(\overrightarrow{PQ}\) with \(P(0,-4)\) and \(Q(6,0)\)
    4. \(\langle -2,4 \rangle\)
    5. \(\langle -3,-3 \rangle\)
    6. \(\langle 5,5\sqrt{2} \rangle\)
    Answer

    clipboard_e2d954a3c45d87071c44e6249735cfa7d.png

    Exercise \(\PageIndex{2}\)

    Find the magnitude and directional angle of the vector.

    1. \(\langle 6,8\rangle\)
    2. \(\langle -2,5 \rangle\)
    3. \(\langle -4,-4\rangle\)
    4. \(\langle 3,-3\rangle\)
    5. \(\langle 2,-2 \rangle\)
    6. \(\langle 4\sqrt{3},4\rangle\)
    7. \(\langle -\sqrt{3},-1\rangle\)
    8. \(\langle -4,4\sqrt{3}\rangle\)
    9. \(\langle -2\sqrt{3},-2\rangle\)
    10. \(\overrightarrow{PQ}\), where \(P(3,1)\) and \(Q(7,4)\)
    11. \(\overrightarrow{PQ}\), where \(P(4,-2)\) and \(Q(-5,7)\)
    Answer
    1. \(10,53^{\circ}\)
    2. \(\sqrt{29}, 112^{\circ}\)
    3. \(4 \sqrt{2}, 225^{\circ}\)
    4. \(3 \sqrt{2},-45^{\circ}\)
    5. \(2 \sqrt{2},-45^{\circ}\)
    6. \(8,30^{\circ}\)
    7. \(2,210^{\circ}\)
    8. \(8,120^{\circ}\)
    9. \(4,210^{\circ}\)
    10. \(5,37^{\circ}\)
    11. \(9 \sqrt{2}, 135^{\circ}\)

    Exercise \(\PageIndex{3}\)

    Perform the operation on the vectors.

    1. \(5\cdot \langle 3,2\rangle\)
    2. \(2\cdot \langle -1,4 \rangle\)
    3. \((-10)\cdot \langle -\dfrac{3}{2},-\dfrac{7}{5} \rangle\)
    4. \(\langle2,3\rangle+\langle 6,1\rangle\)
    5. \(\langle 5,-4\rangle-\langle -8,-9\rangle\)
    6. \(3\cdot \langle 5,3\rangle+4\cdot \langle 2,8\rangle\)
    7. \((-2) \langle -5,-4\rangle-6\langle -1,-2\rangle\)
    8. \(\dfrac 2 3 \langle-3,6\rangle-\dfrac 7 5\langle10,-15\rangle\)
    9. \(\sqrt{2}\cdot \langle \dfrac{\sqrt{8}}{6},\dfrac{-5\sqrt{2}}{12} \rangle-2\langle\dfrac 2 3,\dfrac 5 3\rangle\)
    10. \(6\vec{i}-4\vec{j}\)
    11. \(-5\vec{i}+\vec{j}+3\vec{i}\)
    12. \(3\cdot\langle-4,2\rangle-8\vec{j}+12\vec{i}\)
    13. Find \(4\vec{v}+7\vec{w}\) for \(\vec{v}=\langle 2,3 \rangle\) and \(\vec{w}=\langle 5,1\sqrt{3} \rangle\)
    14. Find \(\vec{v}-2\vec{w}\) for \(\vec{v}=\langle -11,-6 \rangle\) and \(\vec{w}=\langle -3,2 \rangle\)
    15. Find \(3\vec{v}-\vec{w}\) for \(\vec{v}=-4\vec{i}+7\vec{j}\) and \(\vec{w}=6\vec{i}+\vec{j}\)
    16. Find \(-\vec{v}-\sqrt{5}\vec{w}\) for \(\vec{v}=5\vec{j}\) and \(\vec{w}=-8\vec{i}+\sqrt{5}\vec{j}\)
    Answer
    1. \(\langle 15,10\rangle\)
    2. \(\langle-2,8\rangle\)
    3. \(\langle 15,14\rangle\)
    4. \(\langle 8,4\rangle\)
    5. \(\langle 13,5\rangle\)
    6. \(\langle 23,41\rangle\)
    7. \(\langle 16,20\rangle\)
    8. \(\langle-16,25\rangle\)
    9. \(\left\langle-\dfrac{2}{3},-\dfrac{25}{6}\right\rangle\)
    10. \(\langle 6,-4\rangle\)
    11. \(\langle-2,1\rangle\)
    12. \(\langle 0,-2\rangle\)
    13. \(\langle 43,12+7 \sqrt{3}\rangle\)
    14. \(\langle-5,-10\rangle\)
    15. \(\langle-18,20\rangle\)
    16. \(\langle 8 \sqrt{5},-10\rangle\)

    Exercise \(\PageIndex{4}\)

    Find a unit vector in the direction of the given vector.

    1. \(\langle 8,-6 \rangle\)
    2. \(\langle -3,-\sqrt{7} \rangle\)
    3. \(\langle 9,2 \rangle\)
    4. \(\langle -\sqrt{5},\sqrt{31} \rangle\)
    5. \(\langle 5\sqrt{2},3\sqrt{10} \rangle\)
    6. \(\langle 0,-\dfrac{3}{5} \rangle\)
    Answer
    1. \(\left\langle\dfrac{4}{5},-\dfrac{3}{5}\right\rangle\)
    2. \(\left\langle-\dfrac{3}{4},-\dfrac{\sqrt{7}}{4}\right\rangle\)
    3. \(\left\langle\dfrac{9 \sqrt{85}}{85}, \dfrac{2 \sqrt{85}}{85}\right\rangle\)
    4. \(\left\langle-\dfrac{\sqrt{5}}{6}, \dfrac{\sqrt{31}}{6}\right\rangle\)
    5. \(\left\langle\dfrac{5 \sqrt{70}}{70}, \dfrac{3 \sqrt{14}}{14}\right\rangle\)
    6. \(\langle 0,-1\rangle\)

    Exercise \(\PageIndex{5}\)

    The vectors \(\vec{v_1}\) and \(\vec{v_2}\) below are being added. Find the approximate magnitude and directional angle of sum \(\vec{v}=\vec{v_1}+\vec{v_2}\) (see Example 22.2.4).

    1. \(||\vec{v_1}||=6\), and \(\theta_1=60^\circ\), and \(||\vec{v_2}||=2\), and \(\theta_2=180^\circ\)
    2. \(||\vec{v_1}||=3.7\), and \(\theta_1=92^\circ\), and \(||\vec{v_2}||=2.2\), and \(\theta_2=253^\circ\)
    3. \(||\vec{v_1}||=8\), and \(\theta_1=\dfrac{3\pi}{4}\), and \(||\vec{v_2}||=8\sqrt{2}\), and \(\theta_2=\dfrac{3\pi}{2}\)
    Answer
    1. \(\vec{v}=\langle 1,3 \sqrt{3}\rangle,\|\vec{v}\|=2 \sqrt{7}, \theta \approx 79^{\circ}\)
    2. \(\vec{v} \approx\langle-.772,1.594\rangle,\|\vec{v}\| \approx 7.63, \theta \approx 116^{\circ}\)
    3. \(\vec{v}=\langle-4 \sqrt{2},-4 \sqrt{2}\rangle,\|v\|=8, \theta=225^{\circ}=\dfrac{5 \pi}{4}\)

    This page titled 22.3: Exercises is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Thomas Tradler and Holly Carley (New York City College of Technology at CUNY Academic Works) via source content that was edited to the style and standards of the LibreTexts platform.