# 27.2: Review of polynomials and rational functions

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

## Exercise $$\PageIndex{1}$$

Divide the polynomials: $$\dfrac{2x^3+x^2-9x-8}{2x+3}$$

$$x^{2}-x-3+\dfrac{1}{2 x+3}$$

## Exercise $$\PageIndex{2}$$

Find the remainder when dividing $$x^3+3x^2-5x+7$$ by $$x+2$$.

$$21$$

## Exercise $$\PageIndex{3}$$

Which of the following is a factor of $$x^{400}-2x^{99}+1$$: $x-1, \quad x+1, \quad x-0 \nonumber$

$$x − 1$$ is a factor, $$x + 1$$ is not a factor, $$x − 0$$ is not a factor

## Exercise $$\PageIndex{4}$$

Identify the polynomial with its graph.

1. $$f(x)=-x^{2}+2 x+1$$ graph: _______________
2. $$f(x)=-x^{3}+3 x^{2}-3 x+2$$ graph: _______________
3. $$f(x)=x^{3}-3 x^{2}+3 x+1$$ graph: _______________
4. $$f(x)=x^{4}-4 x^{3}+6 x^{2}-4 x+2$$ graph: _______________
1. $$\leftrightarrow \text { iii) }$$
2. $$\leftrightarrow \text { iv) }$$
3. $$\leftrightarrow \mathrm{i})$$
4. $$\leftrightarrow \text { ii) }$$

## Exercise $$\PageIndex{5}$$

Sketch the graph of the function: $f(x)=x^4-10x^3-0.01x^2+0.1x \nonumber$

• What is your viewing window?
• Find all roots, all maxima and all minima of the graph with the calculator.

## Exercise $$\PageIndex{6}$$

Find all roots of $$f(x)=x^3+6x^2+5x-12$$.

Use this information to factor $$f(x)$$ completely.

$$f(x)=(x-1)(x+3)(x+4)$$

## Exercise $$\PageIndex{7}$$

Find a polynomial of degree $$3$$ whose roots are $$0$$, $$1$$, and $$3$$, and so that $$f(2)=10$$.

$$f(x)=(-5) \cdot x(x-1)(x-3)$$

## Exercise $$\PageIndex{8}$$

Find a polynomial of degree $$4$$ with real coefficients, whose roots include $$-2$$, $$5$$, and $$3-2i$$.

$$f(x)=(x+2)(x-5)(x-(3-2 i))(x-(3+2 i))$$ (other correct answers are possible, depending on the choice of the first coefficient)

## Exercise $$\PageIndex{9}$$

Let $$f(x)=\dfrac{3x^2-12}{x^2-2x-3}$$. Sketch the graph of $$f$$. Include all vertical and horizontal asymptotes, all holes, and all $$x$$- and $$y$$-intercepts.

$$f(x)=\dfrac{3(x-2)(x+2)}{(x-3)(x+1)}$$ has domain $$D=\mathbb{R}-\{-1,3\}$$, horizontal asympt. $$y = 3$$, vertical asympt. $$x = −1$$ and $$x = 3$$, no removable discont., $$x$$-intercepts at $$x = −2$$ and $$x = 2$$ and $$x = 3$$, $$y$$-intercept at $$y = 4$$, graph:

## Exercise $$\PageIndex{10}$$

Solve for $$x$$:

1. $$x^4+2x< 2x^3+x^2$$
2. $$x^2+3x\geq 7$$
3. $$\dfrac{x+1}{x+4}\leq 2$$
1. $$(-1,0) \cup(1,2)$$
2. $$\left(-\infty, \dfrac{-3-\sqrt{37}}{2}\right] \cup\left[\dfrac{-3+\sqrt{37}}{2}, \infty\right)$$
3. $$(-\infty,-7] \cup(-4, \infty)$$