27.4: Review of trigonometric functions
( \newcommand{\kernel}{\mathrm{null}\,}\)
Fill in all the trigonometric function values in the table below.
0π6π4π3π2sin(x)cos(x)tan(x)
- Answer
-
x0=0∘π6=30∘π4=45∘π3=60∘π2=90∘sin(x)012√22√321cos(x)1√32√22120tan(x)0√331√3 undef.
Find the exact values of
- cos(−π6)
- sin(−π4)
- tan(−π3)
- Answer
-
- √32
- −√22
- −√3
Find the exact value of the trigonometric function.
- sin(5π4)
- cos(11π6)
[Hint: Use the special 45∘−45∘−90∘ or 30∘−60∘−90∘ triangles to find the solution.]
- Answer
-
- −√22
- √32
Find the amplitude, period, and the phase shift of the given function. Draw the graph over a one-period interval. Label all maxima, minima and intercepts.
- y=3cos(4x−π)
- y=−5sin(x+π2)
- Answer
-
- amplitude 3, period π2, phase-shift π4
- amplitude 5, period 2π, phase-shift −π2
- amplitude 3, period π2, phase-shift π4
Find the exact trigonometric function value.
- cos(π12) [Hint: Use the addition and subtraction of angles formulas.]
- cos(3π8) [Hint: Use the half-angles formulas.]
- Answer
-
- √2+√64
- √2−√22
Let sin(α)=−45 and let α be in quadrant III. Find sin(2α), cos(2α), and tan(2α).
- Answer
-
sin(2α)=2425,cos(2α)=−725,tan(2α)=−247
Find the exact value of:
- sin−1(−12)
- cos−1(−√32)
- tan−1(−√33)
- Answer
-
- −π6
- 5π6
- −π6
Solve for x: 2sin(x)+√3=0
- Answer
-
x=(−1)n+1π3+nπ, where n=0,±1,…
Solve for x: tan2(x)−1=0
- Answer
-
x=±π4+nπ where n=0,±1,…
Solve for x.
- 2cos2(x)−1=0
- 2sin2(x)+15sin(x)+7=0
- Answer
-
- x=±π4+2nπ or x=±3π4+2nπ where n=0,±1,…
- (−1)n+1π6+nπ where n=0,±1,…