27.4: Review of trigonometric functions
\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }
\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}
\newcommand{\id}{\mathrm{id}} \newcommand{\Span}{\mathrm{span}}
( \newcommand{\kernel}{\mathrm{null}\,}\) \newcommand{\range}{\mathrm{range}\,}
\newcommand{\RealPart}{\mathrm{Re}} \newcommand{\ImaginaryPart}{\mathrm{Im}}
\newcommand{\Argument}{\mathrm{Arg}} \newcommand{\norm}[1]{\| #1 \|}
\newcommand{\inner}[2]{\langle #1, #2 \rangle}
\newcommand{\Span}{\mathrm{span}}
\newcommand{\id}{\mathrm{id}}
\newcommand{\Span}{\mathrm{span}}
\newcommand{\kernel}{\mathrm{null}\,}
\newcommand{\range}{\mathrm{range}\,}
\newcommand{\RealPart}{\mathrm{Re}}
\newcommand{\ImaginaryPart}{\mathrm{Im}}
\newcommand{\Argument}{\mathrm{Arg}}
\newcommand{\norm}[1]{\| #1 \|}
\newcommand{\inner}[2]{\langle #1, #2 \rangle}
\newcommand{\Span}{\mathrm{span}} \newcommand{\AA}{\unicode[.8,0]{x212B}}
\newcommand{\vectorA}[1]{\vec{#1}} % arrow
\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow
\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }
\newcommand{\vectorC}[1]{\textbf{#1}}
\newcommand{\vectorD}[1]{\overrightarrow{#1}}
\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}
\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}
\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }
\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}
\newcommand{\avec}{\mathbf a} \newcommand{\bvec}{\mathbf b} \newcommand{\cvec}{\mathbf c} \newcommand{\dvec}{\mathbf d} \newcommand{\dtil}{\widetilde{\mathbf d}} \newcommand{\evec}{\mathbf e} \newcommand{\fvec}{\mathbf f} \newcommand{\nvec}{\mathbf n} \newcommand{\pvec}{\mathbf p} \newcommand{\qvec}{\mathbf q} \newcommand{\svec}{\mathbf s} \newcommand{\tvec}{\mathbf t} \newcommand{\uvec}{\mathbf u} \newcommand{\vvec}{\mathbf v} \newcommand{\wvec}{\mathbf w} \newcommand{\xvec}{\mathbf x} \newcommand{\yvec}{\mathbf y} \newcommand{\zvec}{\mathbf z} \newcommand{\rvec}{\mathbf r} \newcommand{\mvec}{\mathbf m} \newcommand{\zerovec}{\mathbf 0} \newcommand{\onevec}{\mathbf 1} \newcommand{\real}{\mathbb R} \newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]} \newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]} \newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]} \newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]} \newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]} \newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]} \newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]} \newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]} \newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]} \newcommand{\laspan}[1]{\text{Span}\{#1\}} \newcommand{\bcal}{\cal B} \newcommand{\ccal}{\cal C} \newcommand{\scal}{\cal S} \newcommand{\wcal}{\cal W} \newcommand{\ecal}{\cal E} \newcommand{\coords}[2]{\left\{#1\right\}_{#2}} \newcommand{\gray}[1]{\color{gray}{#1}} \newcommand{\lgray}[1]{\color{lightgray}{#1}} \newcommand{\rank}{\operatorname{rank}} \newcommand{\row}{\text{Row}} \newcommand{\col}{\text{Col}} \renewcommand{\row}{\text{Row}} \newcommand{\nul}{\text{Nul}} \newcommand{\var}{\text{Var}} \newcommand{\corr}{\text{corr}} \newcommand{\len}[1]{\left|#1\right|} \newcommand{\bbar}{\overline{\bvec}} \newcommand{\bhat}{\widehat{\bvec}} \newcommand{\bperp}{\bvec^\perp} \newcommand{\xhat}{\widehat{\xvec}} \newcommand{\vhat}{\widehat{\vvec}} \newcommand{\uhat}{\widehat{\uvec}} \newcommand{\what}{\widehat{\wvec}} \newcommand{\Sighat}{\widehat{\Sigma}} \newcommand{\lt}{<} \newcommand{\gt}{>} \newcommand{\amp}{&} \definecolor{fillinmathshade}{gray}{0.9}Fill in all the trigonometric function values in the table below.
\begin{array}{c||c|c|c|c|c} & 0 & \dfrac{\pi}{6} & \dfrac{\pi}{4} & \dfrac{\pi}{3} & \dfrac{\pi}{2} \\ \hline \hline \sin (x) & & & & & \\ \hline \cos (x) & & & & & \\ \hline \tan (x) & & & & & \end{array} \nonumber
- Answer
-
\begin{array}{c||c|c|c|c|c} x & 0=0^{\circ} & \dfrac{\pi}{6}=30^{\circ} & \dfrac{\pi}{4}=45^{\circ} & \dfrac{\pi}{3}=60^{\circ} & \dfrac{\pi}{2}=90^{\circ} \\ \hline \hline \sin (x) & 0 & \dfrac{1}{2} & \dfrac{\sqrt{2}}{2} & \dfrac{\sqrt{3}}{2} & 1 \\ \hline \cos (x) & 1 & \dfrac{\sqrt{3}}{2} & \dfrac{\sqrt{2}}{2} & \dfrac{1}{2} & 0 \\ \hline \tan (x) & 0 & \dfrac{\sqrt{3}}{3} & 1 & \sqrt{3} & \text { undef. } \end{array}
Find the exact values of
- \cos\left(-\dfrac{\pi}{6}\right)
- \sin\left(-\dfrac{\pi}{4}\right)
- \tan\left(-\dfrac{\pi}{3}\right)
- Answer
-
- \dfrac{\sqrt{3}}{2}
- \dfrac{-\sqrt{2}}{2}
- -\sqrt{3}
Find the exact value of the trigonometric function.
- \sin\left(\dfrac{5\pi}{4}\right)
- \cos\left(\dfrac{11\pi}{6}\right)
[Hint: Use the special 45^\circ-45^\circ-90^\circ or 30^\circ-60^\circ-90^\circ triangles to find the solution.]
- Answer
-
- \dfrac{-\sqrt{2}}{2}
- \dfrac{\sqrt{3}}{2}
Find the amplitude, period, and the phase shift of the given function. Draw the graph over a one-period interval. Label all maxima, minima and intercepts.
- y=3 \cos\left(4 x-\pi\right)
- y=-5\sin\left(x+\dfrac{\pi}{2}\right)
- Answer
-
- amplitude 3, period \dfrac{\pi}{2}, phase-shift \dfrac{\pi}{4}
- amplitude 5, period 2\pi , phase-shift \dfrac{-\pi}{2}
- amplitude 3, period \dfrac{\pi}{2}, phase-shift \dfrac{\pi}{4}
Find the exact trigonometric function value.
- \cos\left(\dfrac{\pi}{12}\right) [Hint: Use the addition and subtraction of angles formulas.]
- \cos\left(\dfrac{3\pi}{8}\right) [Hint: Use the half-angles formulas.]
- Answer
-
- \dfrac{\sqrt{2}+\sqrt{6}}{4}
- \dfrac{\sqrt{2-\sqrt{2}}}{2}
Let \sin(\alpha)=-\dfrac{4}{5} and let \alpha be in quadrant III. Find \sin(2\alpha), \cos(2\alpha), and \tan(2\alpha).
- Answer
-
\sin (2 \alpha)=\dfrac{24}{25}, \cos (2 \alpha)=\dfrac{-7}{25}, \tan (2 \alpha)=\dfrac{-24}{7}
Find the exact value of:
- \sin^{-1}\left(-\dfrac{1}{2}\right)
- \cos^{-1}\left(-\dfrac{\sqrt{3}}{2}\right)
- \tan^{-1}\left(-\dfrac{\sqrt{3}}{3}\right)
- Answer
-
- \dfrac{-\pi}{6}
- \dfrac{5 \pi}{6}
- \dfrac{-\pi}{6}
Solve for x: 2\sin(x)+\sqrt{3}=0
- Answer
-
x=(-1)^{n+1} \dfrac{\pi}{3}+n \pi, where n=0, \pm 1, \ldots
Solve for x: \tan^2(x)-1=0
- Answer
-
x=\pm \dfrac{\pi}{4}+n \pi where n=0, \pm 1, \ldots
Solve for x.
- 2\cos^2(x)-1=0
- 2\sin^2(x)+15\sin(x)+7=0
- Answer
-
- x=\pm \dfrac{\pi}{4}+2 n \pi or x=\pm \dfrac{3 \pi}{4}+2 n \pi where n=0, \pm 1, \ldots
- (-1)^{n+1} \dfrac{\pi}{6}+n \pi where n=0, \pm 1, \ldots