# 27.3: Review of exponential and logarithmic functions

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

## Exercise $$\PageIndex{1}$$

The population of a country grows exponentially at a rate of $$1\%$$ per year. If the population was $$35.7$$ million in the year $$2010$$, then what is the population size of this country in the year $$2015$$?

$$37.5$$ million

## Exercise $$\PageIndex{2}$$

A radioactive substance decays exponentially at a rate of $$7\%$$ per hour. How long do you have to wait until the substance has decayed to $$\dfrac 1 4$$ of its original size?

$$19.1$$ hours

## Exercise $$\PageIndex{3}$$

Combine to an expression with only one logarithm.

1. $$\dfrac{2}{3}\ln(x)+4\ln(y)$$
2. $$\dfrac 1 2 \log_2(x)-\dfrac{3}{4}\log_2(y)+3\log_2(z)$$
1. $$\ln \left(\sqrt[3]{x^{2}} y^{4}\right)$$
2. $$\log _{2}\left(\dfrac{\sqrt{x} z^{3}}{\sqrt[4]{y^{3}}}\right)$$

## Exercise $$\PageIndex{4}$$

Assuming that $$x,y>0$$, write the following expressions in terms of $$u=\log(x)$$ and $$v=\log(y)$$:

1. $$\log\left(\dfrac{\sqrt[3]{x^4}}{y^2}\right)$$
2. $$\log\left(x\sqrt{y^5}\right)$$
3. $$\log\left(\sqrt[5]{xy^4}\right)$$
1. $$\dfrac{4}{3} u-2 v$$
2. $$u+\dfrac{5}{2} v$$
3. $$\dfrac{1}{5} u+\dfrac{4}{5} v$$

## Exercise $$\PageIndex{5}$$

Solve without using the calculator: $$\log_3(x)+\log_3(x-8)=2$$

$$x=9$$

## Exercise $$\PageIndex{6}$$

1. Find the exact solution of the equation: $$6^{x+2}=7^x$$
2. Use the calculator to approximate your solution from part (a).
1. $$x=\dfrac{2 \log 6}{\log 7-\log 6}$$
2. $$x \approx 23.25$$

## Exercise $$\PageIndex{7}$$

$$45$$mg of fluorine-18 decay in $$3$$ hours to $$14.4$$mg. Find the half-life of fluorine-18.

$$1.82$$ hour

## Exercise $$\PageIndex{8}$$

A bone has lost $$35\%$$ of its carbon-$$14$$. How old is the bone?

$$3561$$ year

## Exercise $$\PageIndex{9}$$

How much do you have to invest today at $$3\%$$ compounded quarterly to obtain $$\ 2,000$$ in return in $$3$$ years?

$$\ 1,828.48$$

## Exercise $$\PageIndex{10}$$

$$\ 500$$ is invested with continuous compounding. If $$\692.01$$ is returned after $$5$$ years, what is the interest rate?

$$r=6.5 \%$$