Skip to main content
Mathematics LibreTexts

5.2: Angles

  • Page ID
    114026
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)
    Learning Objectives

    In this section, you will:

    • Draw angles in standard position.
    • Convert between degrees and radians.
    • Find coterminal angles.
    • Find the length of a circular arc.
    • Use linear and angular speed to describe motion on a circular path.

    A golfer swings to hit a ball over a sand trap and onto the green. An airline pilot maneuvers a plane toward a narrow runway. A dress designer creates the latest fashion. What do they all have in common? They all work with angles, and so do all of us at one time or another. Sometimes we need to measure angles exactly with instruments. Other times we estimate them or judge them by eye. Either way, the proper angle can make the difference between success and failure in many undertakings. In this section, we will examine properties of angles.

    Drawing Angles in Standard Position

    Properly defining an angle first requires that we define a ray. A ray consists of one point on a line and all points extending in one direction from that point. The first point is called the endpoint of the ray. We can refer to a specific ray by stating its endpoint and any other point on it. The ray in Figure 1 can be named as ray EF, or in symbol form EF.EF.

    Illustration of Ray EF, with point F and endpoint E.
    Figure 1

    An angle is the union of two rays having a common endpoint. The endpoint is called the vertex of the angle, and the two rays are the sides of the angle. The angle in Figure 2 is formed from ED ED and EF . EF . Angles can be named using a point on each ray and the vertex, such as angle DEF, or in symbol form  ∠DEF.  ∠DEF.

    Illustration of Angle DEF, with vertex E and points D and F.
    Figure 2

    Greek letters are often used as variables for the measure of an angle. Table 1 is a list of Greek letters commonly used to represent angles, and a sample angle is shown in Figure 3.

    θ θ φorϕ φorϕ α α β β γ γ
    theta phi alpha beta gamma
    Table 1
    Illustration of angle theta.
    Figure 3 Angle theta, shown as θ θ

    Angle creation is a dynamic process. We start with two rays lying on top of one another. We leave one fixed in place, and rotate the other. The fixed ray is the initial side, and the rotated ray is the terminal side. In order to identify the different sides, we indicate the rotation with a small arc and arrow close to the vertex as in Figure 4.

    Illustration of an angle with labels for initial side, terminal side, and vertex.
    Figure 4

    As we discussed at the beginning of the section, there are many applications for angles, but in order to use them correctly, we must be able to measure them. The measure of an angle is the amount of rotation from the initial side to the terminal side. Probably the most familiar unit of angle measurement is the degree. One degree is 1 360 1 360 of a circular rotation, so a complete circular rotation contains 360 degrees. An angle measured in degrees should always include the unit “degrees” after the number, or include the degree symbol °. For example, 90 degrees = 90°.

    To formalize our work, we will begin by drawing angles on an x-y coordinate plane. Angles can occur in any position on the coordinate plane, but for the purpose of comparison, the convention is to illustrate them in the same position whenever possible. An angle is in standard position if its vertex is located at the origin, and its initial side extends along the positive x-axis. See Figure 5.

    Graph of an angle in standard position with labels for the initial side and terminal side.
    Figure 5

    If the angle is measured in a counterclockwise direction from the initial side to the terminal side, the angle is said to be a positive angle. If the angle is measured in a clockwise direction, the angle is said to be a negative angle.

    Drawing an angle in standard position always starts the same way—draw the initial side along the positive x-axis. To place the terminal side of the angle, we must calculate the fraction of a full rotation the angle represents. We do that by dividing the angle measure in degrees by 360°. For example, to draw a 90° angle, we calculate that 90° 360° = 1 4 . 90° 360° = 1 4 . So, the terminal side will be one-fourth of the way around the circle, moving counterclockwise from the positive x-axis. To draw a 360° angle, we calculate that 360° 360° =1. 360° 360° =1. So the terminal side will be 1 complete rotation around the circle, moving counterclockwise from the positive x-axis. In this case, the initial side and the terminal side overlap. See Figure 6.

    Side by side graphs. Graph on the left is a 90 degree angle and graph on the right is a 360 degree angle. Terminal side and initial side are labeled for both graphs.
    Figure 6

    Since we define an angle in standard position by its initial side, we have a special type of angle whose terminal side lies on an axis, a quadrantal angle. This type of angle can have a measure of 0°, 90°, 180°, 270° or 360°. See Figure 7.

    Four side by side graphs. First graph shows angle of 0 degrees. Second graph shows an angle of 90 degrees. Third graph shows an angle of 180 degrees. Fourth graph shows an angle of 270 degrees.
    Figure 7 Quadrantal angles are angles in standard position whose terminal side lies along an axis. Examples are shown.

    Quadrantal Angles

    Quadrantal angles are angels in standard position whose terminal side lies on an axis, including 0°, 90°, 180°, 270°, or 360°.

    How To

    Given an angle measure in degrees, draw the angle in standard position.

    1. Express the angle measure as a fraction of 360°.
    2. Reduce the fraction to simplest form.
    3. Draw an angle that contains that same fraction of the circle, beginning on the positive x-axis and moving counterclockwise for positive angles and clockwise for negative angles.

    Example 1

    Drawing an Angle in Standard Position Measured in Degrees

    1. Sketch an angle of 30° in standard position.
    2. Sketch an angle of −135° in standard position.
    Answer

    1. Divide the angle measure by 360°.

      30° 360° = 1 12 30° 360° = 1 12

      To rewrite the fraction in a more familiar fraction, we can recognize that

      1 12 = 1 3 ( 1 4 ) 1 12 = 1 3 ( 1 4 )

      One-twelfth equals one-third of a quarter, so by dividing a quarter rotation into thirds, we can sketch a line at 30° as in Figure 8.

      Graph of a 30 degree angle.
      Figure 8
  • Divide the angle measure by 360°.

    135° 360° = 3 8 135° 360° = 3 8

    In this case, we can recognize that

    3 8 = 3 2 ( 1 4 ) 3 8 = 3 2 ( 1 4 )

    Negative three-eighths is one and one-half times a quarter, so we place a line by moving clockwise one full quarter and one-half of another quarter, as in Figure 9.

    Graph of a negative 135 degree angle.
    Figure 9
  • Try It #1

    Show an angle of 240° on a circle in standard position.

    Converting Between Degrees and Radians

    Dividing a circle into 360 parts is an arbitrary choice, although it creates the familiar degree measurement. We may choose other ways to divide a circle. To find another unit, think of the process of drawing a circle. Imagine that you stop before the circle is completed. The portion that you drew is referred to as an arc. An arc may be a portion of a full circle, a full circle, or more than a full circle, represented by more than one full rotation. The length of the arc around an entire circle is called the circumference of that circle.

    The circumference of a circle is C=2πr. C=2πr. If we divide both sides of this equation by r, r, we create the ratio of the circumference to the radius, which is always 2π 2π regardless of the length of the radius. So the circumference of any circle is 2π6.28 2π6.28 times the length of the radius. That means that if we took a string as long as the radius and used it to measure consecutive lengths around the circumference, there would be room for six full string-lengths and a little more than a quarter of a seventh, as shown in Figure 10.

    Illustration of a circle showing the number of radians in a circle.
    Figure 10

    This brings us to our new angle measure. One radian is the measure of a central angle of a circle that intercepts an arc equal in length to the radius of that circle. A central angle is an angle formed at the center of a circle by two radii. Because the total circumference equals 2π 2π times the radius, a full circular rotation is 2π 2π radians. So

    2π radians= 360 π radians= 360 2 = 180 1 radian= 180 π 57.3 2π radians= 360 π radians= 360 2 = 180 1 radian= 180 π 57.3

    See Figure 11. Note that when an angle is described without a specific unit, it refers to radian measure. For example, an angle measure of 3 indicates 3 radians. In fact, radian measure is dimensionless, since it is the quotient of a length (circumference) divided by a length (radius) and the length units cancel out.

    Illustration of a circle with angle t, radius r, and an arc of r.
    Figure 11 The angle t t sweeps out a measure of one radian. Note that the length of the intercepted arc is the same as the length of the radius of the circle.

    Relating Arc Lengths to Radius

    An arc length s s is the length of the curve along the arc. Just as the full circumference of a circle always has a constant ratio to the radius, the arc length produced by any given angle also has a constant relation to the radius, regardless of the length of the radius.

    This ratio, called the radian measure, is the same regardless of the radius of the circle—it depends only on the angle. This property allows us to define a measure of any angle as the ratio of the arc length s s to the radius r. r. See Figure 12.

    s=rθ θ= s r s=rθ θ= s r

    If s=r, s=r, then θ= r r = 1 radian. θ= r r = 1 radian.

    Three side by side graphs of circles. First graph has a circle with radius r and arc s, with an equivalence between r and s. The second graph shows a circle with radius r and an arc of length 2r. The third graph shows a circle with a full revolution, showing 6.28 radians.
    Figure 12 (a) In an angle of 1 radian, the arc length s s equals the radius r. r. (b) An angle of 2 radians has an arc length s=2r. s=2r. (c) A full revolution is 2π 2π or about 6.28 radians.

    To elaborate on this idea, consider two circles, one with radius 2 and the other with radius 3. Recall the circumference of a circle is C=2πr, C=2πr, where r r is the radius. The smaller circle then has circumference 2π(2)=4π 2π(2)=4π and the larger has circumference 2π(3)=6π. 2π(3)=6π. Now we draw a 45° angle on the two circles, as in Figure 13.

    Graph of a circle with a 45 degree angle and a label for pi/4 radians.
    Figure 13 A 45° angle contains one-eighth of the circumference of a circle, regardless of the radius.

    Notice what happens if we find the ratio of the arc length divided by the radius of the circle.

    Smaller circle: 1 2 π 2 = 1 4 π Larger circle: 3 4 π 3 = 1 4 π Smaller circle: 1 2 π 2 = 1 4 π Larger circle: 3 4 π 3 = 1 4 π

    Since both ratios are 1 4 π, 1 4 π, the angle measures of both circles are the same, even though the arc length and radius differ.

    Radians

    One radian is the measure of the central angle of a circle such that the length of the arc between the initial side and the terminal side is equal to the radius of the circle. A full revolution (360°) equals 2π 2π radians. A half revolution (180°) is equivalent to π π radians.

    The radian measure of an angle is the ratio of the length of the arc subtended by the angle to the radius of the circle. In other words, if s s is the length of an arc of a circle, and r r is the radius of the circle, then the central angle containing that arc measures s r s r radians. In a circle of radius 1, the radian measure corresponds to the length of the arc.

    Q&A

    A measure of 1 radian looks to be about 60°. Is that correct?

    Yes. It is approximately 57.3°. Because 2π 2π radians equals 360°, 1 1 radian equals 360° 2π 57.3°. 360° 2π 57.3°.

    Using Radians

    Because radian measure is the ratio of two lengths, it is a unitless measure. For example, in Figure 12, suppose the radius were 2 inches and the distance along the arc were also 2 inches. When we calculate the radian measure of the angle, the “inches” cancel, and we have a result without units. Therefore, it is not necessary to write the label “radians” after a radian measure, and if we see an angle that is not labeled with “degrees” or the degree symbol, we can assume that it is a radian measure.

    Considering the most basic case, the unit circle (a circle with radius 1), we know that 1 rotation equals 360 degrees, 360°. We can also track one rotation around a circle by finding the circumference, C=2πr, C=2πr, and for the unit circle C=2π. C=2π. These two different ways to rotate around a circle give us a way to convert from degrees to radians.

    1 rotation =360° =2π radians 1 2 rotation=180° =π radians 1 4 rotation=90° = π 2 radians 1 rotation =360° =2π radians 1 2 rotation=180° =π radians 1 4 rotation=90° = π 2 radians

    Identifying Special Angles Measured in Radians

    In addition to knowing the measurements in degrees and radians of a quarter revolution, a half revolution, and a full revolution, there are other frequently encountered angles in one revolution of a circle with which we should be familiar. It is common to encounter multiples of 30, 45, 60, and 90 degrees. These values are shown in Figure 14. Memorizing these angles will be very useful as we study the properties associated with angles.

    A graph of a circle with angles of 0, 30, 45, 60, 90, 120, 135, 150, 180, 210, 225, 240, 270, 300, 315, and 330 degrees.
    Figure 14 Commonly encountered angles measured in degrees

    Now, we can list the corresponding radian values for the common measures of a circle corresponding to those listed in Figure 14, which are shown in Figure 15. Be sure you can verify each of these measures.

    A graph of a circle with angles of 0, 30, 45, 60, 90, 120, 135, 150, 180, 210, 225, 240, 270, 300, 315, and 330 degrees. The graph also shows the equivalent amount of radians for each angle of degrees. For example, 30 degrees is equal to pi/6 radians.
    Figure 15 Commonly encountered angles measured in radians

    Example 2

    Finding a Radian Measure

    Find the radian measure of one-third of a full rotation.

    Answer

    For any circle, the arc length along such a rotation would be one-third of the circumference. We know that

    1 rotation=2πr 1 rotation=2πr

    So,

    s= 1 3 (2πr) = 2πr 3 s= 1 3 (2πr) = 2πr 3

    The radian measure would be the arc length divided by the radius.

    radian measure = 2πr 3 r = 2πr 3r = 2π 3 radian measure = 2πr 3 r = 2πr 3r = 2π 3

    Try It #2

    Find the radian measure of three-fourths of a full rotation.

    Converting between Radians and Degrees

    Because degrees and radians both measure angles, we need to be able to convert between them. We can easily do so using a proportion.

    θ 180 = θ R π θ 180 = θ R π

    This proportion shows that the measure of angle θ θ in degrees divided by 180 equals the measure of angle θ θ in radians divided by π.  π.  Or, phrased another way, degrees is to 180 as radians is to π. π.

    Degrees 180 = Radians π Degrees 180 = Radians π

    Converting between Radians and Degrees

    To convert between degrees and radians, use the proportion

    θ 180 = θ R π θ 180 = θ R π

    Example 3

    Converting Radians to Degrees

    Convert each radian measure to degrees.

    1. π 6 π 6
    2. 3
    Answer

    Because we are given radians and we want degrees, we should set up a proportion and solve it.

    1. We use the proportion, substituting the given information.

      θ 180 = θ R π θ 180 = π 6 π θ= 180 6 θ= 30 θ 180 = θ R π θ 180 = π 6 π θ= 180 6 θ= 30

    2. We use the proportion, substituting the given information.

      θ 180 = θ R π θ 180 = 3 π θ= 3(180) π θ 172 θ 180 = θ R π θ 180 = 3 π θ= 3(180) π θ 172

    Try It #3

    Convert 3π 4 3π 4 radians to degrees.

    Example 4

    Converting Degrees to Radians

    Convert 15 15 degrees to radians.

    Answer

    In this example, we start with degrees and want radians, so we again set up a proportion and solve it, but we substitute the given information into a different part of the proportion.

    θ 180 = θ R π 15 180 = θ R π 15π 180 = θ R π 12 = θ R θ 180 = θ R π 15 180 = θ R π 15π 180 = θ R π 12 = θ R

    Analysis

    Another way to think about this problem is by remembering that 30 = π 6 . 30 = π 6 . Because 15 = 1 2 ( 30 ), 15 = 1 2 ( 30 ), we can find that 1 2 ( π 6 ) 1 2 ( π 6 ) is π 12 . π 12 .

    Try It #4

    Convert 126° to radians.

    Finding Coterminal Angles

    Converting between degrees and radians can make working with angles easier in some applications. For other applications, we may need another type of conversion. Negative angles and angles greater than a full revolution are more awkward to work with than those in the range of 0° to 360°, or 0 to 2π. 2π. It would be convenient to replace those out-of-range angles with a corresponding angle within the range of a single revolution.

    It is possible for more than one angle to have the same terminal side. Look at Figure 16. The angle of 140° is a positive angle, measured counterclockwise. The angle of –220° is a negative angle, measured clockwise. But both angles have the same terminal side. If two angles in standard position have the same terminal side, they are coterminal angles. Every angle greater than 360° or less than 0° is coterminal with an angle between 0° and 360°, and it is often more convenient to find the coterminal angle within the range of 0° to 360° than to work with an angle that is outside that range.

    A graph showing the equivalence between a 140 degree angle and a negative 220 degree angle.
    Figure 16 An angle of 140° and an angle of –220° are coterminal angles.

    Any angle has infinitely many coterminal angles because each time we add 360° to that angle—or subtract 360° from it—the resulting value has a terminal side in the same location. For example, 100° and 460° are coterminal for this reason, as is −260°. Recognizing that any angle has infinitely many coterminal angles explains the repetitive shape in the graphs of trigonometric functions.

    An angle’s reference angle is the measure of the smallest, positive, acute angle t t formed by the terminal side of the angle t t and the horizontal axis. Thus positive reference angles have terminal sides that lie in the first quadrant and can be used as models for angles in other quadrants. See Figure 17 for examples of reference angles for angles in different quadrants.

    Four side by side graphs. First graph shows an angle of t in quadrant 1 in it's normal position. Second graph shows an angle of t in quadrant 2 due to a rotation of pi minus t. Third graph shows an angle of t in quadrant 3 due to a rotation of t minus pi. Fourth graph shows an angle of t in quadrant 4 due to a rotation of two pi minus t.
    Figure 17

    Coterminal and Reference Angles

    Coterminal angles are two angles in standard position that have the same terminal side.

    An angle’s reference angle is the size of the smallest acute angle, t , t , formed by the terminal side of the angle t t and the horizontal axis.

    How To

    Given an angle greater than 360°, find a coterminal angle between 0° and 360°.

    1. Subtract 360° from the given angle.
    2. If the result is still greater than 360°, subtract 360° again till the result is between 0° and 360°.
    3. The resulting angle is coterminal with the original angle.

    Example 5

    Finding an Angle Coterminal with an Angle of Measure Greater Than 360°

    Find the least positive angle θθ that is coterminal with an angle measuring 800°, where θ<360°. θ<360°.

    Answer

    An angle with measure 800° is coterminal with an angle with measure 800 − 360 = 440°, but 440° is still greater than 360°, so we subtract 360° again to find another coterminal angle: 440 − 360 = 80°.

    The angle θ=80° θ=80° is coterminal with 800°. To put it another way, 800° equals 80° plus two full rotations, as shown in Figure 18.

    A graph showing the equivalence between an 80 degree angle and an 800 degree angle.
    Figure 18

    Try It #5

    Find an angle α α that is coterminal with an angle measuring 870°, where α<360°. α<360°.

    How To

    Given an angle with measure less than 0°, find a coterminal angle having a measure between 0° and 360°.

    1. Add 360° to the given angle.
    2. If the result is still less than 0°, add 360° again until the result is between 0° and 360°.
    3. The resulting angle is coterminal with the original angle.

    Example 6

    Finding an Angle Coterminal with an Angle Measuring Less Than 0°

    Show the angle with measure −45° on a circle and find a positive coterminal angle α α such that 0° ≤ α < 360°.

    Answer

    Since 45° is half of 90°, we can start at the positive horizontal axis and measure clockwise half of a 90° angle.

    Because we can find coterminal angles by adding or subtracting a full rotation of 360°, we can find a positive coterminal angle here by adding 360°:

    45°+360°=315° 45°+360°=315°

    We can then show the angle on a circle, as in Figure 19.

    A graph showing the equivalence of a 315 degree angle and a negative 45 degree angle.
    Figure 19

    Try It #6

    Find an angle β β that is coterminal with an angle measuring −300° such that β<360°. β<360°.

    Finding Coterminal Angles Measured in Radians

    We can find coterminal angles measured in radians in much the same way as we have found them using degrees. In both cases, we find coterminal angles by adding or subtracting one or more full rotations.

    How To

    Given an angle greater than 2π, 2π, find a coterminal angle between 0 and 2π. 2π.

    1. Subtract 2π 2π from the given angle.
    2. If the result is still greater than 2π, 2π, subtract 2π 2π again until the result is between 0 0 and 2π. 2π.
    3. The resulting angle is coterminal with the original angle.

    Example 7

    Finding Coterminal Angles Using Radians

    Find an angle β β that is coterminal with 19π 4 , 19π 4 , where 0β<2π. 0β<2π.

    Answer

    When working in degrees, we found coterminal angles by adding or subtracting 360 degrees, a full rotation. Likewise, in radians, we can find coterminal angles by adding or subtracting full rotations of 2π 2π radians:

    19π 4 2π= 19π 4 8π 4 = 11π 4 19π 4 2π= 19π 4 8π 4 = 11π 4

    The angle 11π 4 11π 4 is coterminal, but not less than 2π, 2π, so we subtract another rotation:

    11π 4 2π= 11π 4 8π 4 = 3π 4 11π 4 2π= 11π 4 8π 4 = 3π 4

    The angle 3π 4 3π 4 is coterminal with 19π 4 , 19π 4 , as shown in Figure 20.

    A graph showing a circle and the equivalence between angles of 3pi/4 radians and 19pi/4 radians.
    Figure 20

    Try It #7

    Find an angle of measure θ θ that is coterminal with an angle of measure 17π 6 17π 6 where 0θ<2π. 0θ<2π.

    Determining the Length of an Arc

    Recall that the radian measure θ θ of an angle was defined as the ratio of the arc length s s of a circular arc to the radius r r of the circle, θ= s r . θ= s r . From this relationship, we can find arc length along a circle, given an angle.

    Arc Length on a Circle

    In a circle of radius r, the length of an arc s s subtended by an angle with measure θ θ in radians, shown in Figure 21, is

    s=rθ s=rθ

    Illustration of circle with angle theta, radius r, and arc with length s.
    Figure 21

    How To

    Given a circle of radius r, r, calculate the length s s of the arc subtended by a given angle of measure θ. θ.

    1. If necessary, convert θ θ to radians.
    2. Multiply the radius r r by the radian measure of θ:s=rθ. θ:s=rθ.

    Example 8

    Finding the Length of an Arc

    Assume the orbit of Mercury around the sun is a perfect circle. Mercury is approximately 36 million miles from the sun.

    1. In one Earth day, Mercury completes 0.0114 of its total revolution. How many miles does it travel in one day?
    2. Use your answer from part (a) to determine the radian measure for Mercury’s movement in one Earth day.
    Answer

    1. Let’s begin by finding the circumference of Mercury’s orbit.

      C=2πr =2π(36 million miles) 226 million miles C=2πr =2π(36 million miles) 226 million miles

      Since Mercury completes 0.0114 of its total revolution in one Earth day, we can now find the distance traveled:

      ( 0.0114 )226 million miles = 2.58 million miles ( 0.0114 )226 million miles = 2.58 million miles

    2. Now, we convert to radians:

      radian = arclength radius = 2.58 million miles 36 million miles =0.0717 radian = arclength radius = 2.58 million miles 36 million miles =0.0717

    Try It #8

    Find the arc length along a circle of radius 10 units subtended by an angle of 215°.

    Finding the Area of a Sector of a Circle

    In addition to arc length, we can also use angles to find the area of a sector of a circle. A sector is a region of a circle bounded by two radii and the intercepted arc, like a slice of pizza or pie. Recall that the area of a circle with radius r r can be found using the formula A=π r 2 . A=π r 2 . If the two radii form an angle of θ, θ, measured in radians, then θ 2π θ 2π is the ratio of the angle measure to the measure of a full rotation and is also, therefore, the ratio of the area of the sector to the area of the circle. Thus, the area of a sector is the fraction θ 2π θ 2π multiplied by the entire area. (Always remember that this formula only applies if θ θ is in radians.)

    Area of sector =( θ 2π )π r 2 = θπ r 2 2π = 1 2 θ r 2 Area of sector =( θ 2π )π r 2 = θπ r 2 2π = 1 2 θ r 2

    Area of a Sector

    The area of a sector of a circle with radius r r subtended by an angle θ, θ, measured in radians, is

    A= 1 2 θ r 2 A= 1 2 θ r 2

    See Figure 22.

    Graph showing a circle with angle theta and radius r, and the area of the slice of circle created by the initial side and terminal side of the angle.
    Figure 22 The area of the sector equals half the square of the radius times the central angle measured in radians.

    How To

    Given a circle of radius r, r, find the area of a sector defined by a given angle θ. θ.

    1. If necessary, convert θ θ to radians.
    2. Multiply half the radian measure of θ θ by the square of the radius r:A= 1 2 θ r 2 . r:A= 1 2 θ r 2 .

    Example 9

    Finding the Area of a Sector

    An automatic lawn sprinkler sprays a distance of 20 feet while rotating 30 degrees, as shown in Figure 23. What is the area of the sector of grass the sprinkler waters?

    Illustration of a 30 degree ange with a terminal and initial side with length of 20 feet.
    Figure 23 The sprinkler sprays 20 ft within an arc of 30°.
    Answer

    First, we need to convert the angle measure into radians. Because 30 degrees is one of our special angles, we already know the equivalent radian measure, but we can also convert:

    30 degrees=30 π 180 = π 6 radians 30 degrees=30 π 180 = π 6 radians

    The area of the sector is then

    Area = 1 2 ( π 6 ) (20) 2 104.72 Area = 1 2 ( π 6 ) (20) 2 104.72

    So the area is about 104.72 ft 2 . 104.72 ft 2 .

    Try It #9

    In central pivot irrigation, a large irrigation pipe on wheels rotates around a center point. A farmer has a central pivot system with a radius of 400 meters. If water restrictions only allow her to water 150 thousand square meters a day, what angle should she set the system to cover? Write the answer in radian measure to two decimal places.

    Use Linear and Angular Speed to Describe Motion on a Circular Path

    In addition to finding the area of a sector, we can use angles to describe the speed of a moving object. An object traveling in a circular path has two types of speed. Linear speed is speed along a straight path and can be determined by the distance it moves along (its displacement) in a given time interval. For instance, if a wheel with radius 5 inches rotates once a second, a point on the edge of the wheel moves a distance equal to the circumference, or 10π 10π inches, every second. So the linear speed of the point is 10π 10π in./s. The equation for linear speed is as follows where v v is linear speed, s s is displacement, and t t is time.

    v= s t v= s t

    Angular speed results from circular motion and can be determined by the angle through which a point rotates in a given time interval. In other words, angular speed is angular rotation per unit time. So, for instance, if a gear makes a full rotation every 4 seconds, we can calculate its angular speed as 360 degrees 4 seconds = 360 degrees 4 seconds = 90 degrees per second. Angular speed can be given in radians per second, rotations per minute, or degrees per hour for example. The equation for angular speed is as follows, where ω ω (read as omega) is angular speed, θ θ is the angle traversed, and t t is time.

    ω= θ t ω= θ t

    Combining the definition of angular speed with the arc length equation, s=rθ, s=rθ, we can find a relationship between angular and linear speeds. The angular speed equation can be solved for θ, θ, giving θ=ωt. θ=ωt. Substituting this into the arc length equation gives:

    s=rθ =rωt s=rθ =rωt

    Substituting this into the linear speed equation gives:

    v= s t = rωt t =rω v= s t = rωt t =rω

    Angular and Linear Speed

    As a point moves along a circle of radius r, r, its angular speed, ω, ω, is the angular rotation θ θ per unit time, t. t.

    ω= θ t ω= θ t

    The linear speed, v, v, of the point can be found as the distance traveled, arc length s, s, per unit time, t. t.

    v= s t v= s t

    When the angular speed is measured in radians per unit time, linear speed and angular speed are related by the equation

    v=rω v=rω

    This equation states that the angular speed in radians, ω, ω, representing the amount of rotation occurring in a unit of time, can be multiplied by the radius r r to calculate the total arc length traveled in a unit of time, which is the definition of linear speed.

    How To

    Given the amount of angle rotation and the time elapsed, calculate the angular speed.

    1. If necessary, convert the angle measure to radians.
    2. Divide the angle in radians by the number of time units elapsed: ω= θ t ω= θ t .
    3. The resulting speed will be in radians per time unit.

    Example 10

    Finding Angular Speed

    A water wheel, shown in Figure 24, completes 1 rotation every 5 seconds. Find the angular speed in radians per second.

    Illustration of a water wheel.
    Figure 24
    Answer

    The wheel completes 1 rotation, or passes through an angle of 2π 2π radians in 5 seconds, so the angular speed would be ω= 2π 5 1.257 ω= 2π 5 1.257 radians per second.

    Try It #10

    An old vinyl record is played on a turntable rotating clockwise at a rate of 45 rotations per minute. Find the angular speed in radians per second.

    How To

    Given the radius of a circle, an angle of rotation, and a length of elapsed time, determine the linear speed.

    1. Convert the total rotation to radians if necessary.
    2. Divide the total rotation in radians by the elapsed time to find the angular speed: apply ω= θ t . ω= θ t .
    3. Multiply the angular speed by the length of the radius to find the linear speed, expressed in terms of the length unit used for the radius and the time unit used for the elapsed time: apply v=rω. v=rω.

    Example 11

    Finding a Linear Speed

    A bicycle has wheels 28 inches in diameter. A tachometer determines the wheels are rotating at 180 RPM (revolutions per minute). Find the speed the bicycle is traveling down the road.

    Answer

    Here, we have an angular speed and need to find the corresponding linear speed, since the linear speed of the outside of the tires is the speed at which the bicycle travels down the road.

    We begin by converting from rotations per minute to radians per minute. It can be helpful to utilize the units to make this conversion:

    180 rotations minute 2πradians rotation =360π radians minute 180 rotations minute 2πradians rotation =360π radians minute

    Using the formula from above along with the radius of the wheels, we can find the linear speed:

    v=(14inches)( 360π radians minute ) =5040π inches minute v=(14inches)( 360π radians minute ) =5040π inches minute

    Remember that radians are a unitless measure, so it is not necessary to include them.

    Finally, we may wish to convert this linear speed into a more familiar measurement, like miles per hour.

    5040π inches minute 1 feet 12 inches 1 mile 5280 feet 60 minutes 1 hour 14.99miles per hour (mph) 5040π inches minute 1 feet 12 inches 1 mile 5280 feet 60 minutes 1 hour 14.99miles per hour (mph)

    Try It #11

    A satellite is rotating around Earth at 0.25 radians per hour at an altitude of 242 km above Earth. If the radius of Earth is 6378 kilometers, find the linear speed of the satellite in kilometers per hour.

    Media

    Access these online resources for additional instruction and practice with angles, arc length, and areas of sectors.

    5.1 Section Exercises

    Verbal

    1.

    Draw an angle in standard position. Label the vertex, initial side, and terminal side.

    2.

    Explain why there are an infinite number of angles that are coterminal to a certain angle.

    3.

    State what a positive or negative angle signifies, and explain how to draw each.

    4.

    How does radian measure of an angle compare to the degree measure? Include an explanation of 1 radian in your paragraph.

    5.

    Explain the differences between linear speed and angular speed when describing motion along a circular path.

    Graphical

    For the following exercises, draw an angle in standard position with the given measure.

    6.

    30°

    7.

    300°

    8.

    −80°

    9.

    135°

    10.

    −150°

    11.

    2π 3 2π 3

    12.

    7π 4 7π 4

    13.

    5π 6 5π 6

    14.

    π 2 π 2

    15.

    π 10 π 10

    16.

    415°

    17.

    −120°

    18.

    −315°

    19.

    22π 3 22π 3

    20.

    π 6 π 6

    21.

    4π 3 4π 3

    For the following exercises, refer to Figure 25. Round to two decimal places.

    Graph of a circle with radius of 3 inches and an angle of 140 degrees.
    Figure 25
    22.

    Find the arc length.

    23.

    Find the area of the sector.

    For the following exercises, refer to Figure 26. Round to two decimal places.

    Graph of a circle with angle of 2pi/5 and a radius of 4.5 cm.
    Figure 26
    24.

    Find the arc length.

    25.

    Find the area of the sector.

    Algebraic

    For the following exercises, convert angles in radians to degrees.

    26.

    3π 4 3π 4 radians

    27.

    π 9 π 9 radians

    28.

    5π 4 5π 4 radians

    29.

    π 3 π 3 radians

    30.

    7π 3 7π 3 radians

    31.

    5π 12 5π 12 radians

    32.

    11π 6 11π 6 radians

    For the following exercises, convert angles in degrees to radians.

    33.

    90°

    34.

    100°

    35.

    −540°

    36.

    −120°

    37.

    180°

    38.

    −315°

    39.

    150°

    For the following exercises, use to given information to find the length of a circular arc. Round to two decimal places.

    40.

    Find the length of the arc of a circle of radius 12 inches subtended by a central angle of π 4 π 4 radians.

    41.

    Find the length of the arc of a circle of radius 5.02 miles subtended by the central angle of π 3 . π 3 .

    42.

    Find the length of the arc of a circle of diameter 14 meters subtended by the central angle of 5π 6 . 5π 6 .

    43.

    Find the length of the arc of a circle of radius 10 centimeters subtended by the central angle of 50°.

    44.

    Find the length of the arc of a circle of radius 5 inches subtended by the central angle of 220°.

    45.

    Find the length of the arc of a circle of diameter 12 meters subtended by the central angle is 63°.

    For the following exercises, use the given information to find the area of the sector. Round to four decimal places.

    46.

    A sector of a circle has a central angle of 45° and a radius 6 cm.

    47.

    A sector of a circle has a central angle of 30° and a radius of 20 cm.

    48.

    A sector of a circle with diameter 10 feet and an angle of π 2 π 2 radians.

    49.

    A sector of a circle with radius of 0.7 inches and an angle of π π radians.

    For the following exercises, find the angle between 0° and 360° that is coterminal to the given angle.

    50.

    −40°

    51.

    −110°

    52.

    700°

    53.

    1400°

    For the following exercises, find the angle between 0 and 2π 2π in radians that is coterminal to the given angle.

    54.

    π 9 π 9

    55.

    10π 3 10π 3

    56.

    13π 6 13π 6

    57.

    44π 9 44π 9

    Real-World Applications

    58.

    A truck with 32-inch diameter wheels is traveling at 60 mi/h. Find the angular speed of the wheels in rad/min. How many revolutions per minute do the wheels make?

    59.

    A bicycle with 24-inch diameter wheels is traveling at 15 mi/h. Find the angular speed of the wheels in rad/min. How many revolutions per minute do the wheels make?

    60.

    A wheel of radius 8 inches is rotating 15°/s. What is the linear speed v, v, the angular speed in RPM, and the angular speed in rad/s?

    61.

    A wheel of radius 14 inches is rotating 0.5 rad/s. What is the linear speed v,v, the angular speed in RPM, and the angular speed in deg/s?

    62.

    A CD has diameter of 120 millimeters. When playing audio, the angular speed varies to keep the linear speed constant where the disc is being read. When reading along the outer edge of the disc, the angular speed is about 200 RPM (revolutions per minute). Find the linear speed.

    63.

    When being burned in a writable CD-R drive, the angular speed of a CD varies to keep the linear speed constant where the disc is being written. When writing along the outer edge of the disc, the angular speed of one drive is about 4,800 RPM (revolutions per minute. Find the linear speed if the CD has diameter of 120millimeters.

    64.

    A person is standing on the equator of Earth (radius 3960 miles). What are his linear and angular speeds?

    65.

    Find the distance along an arc on the surface of Earth that subtends a central angle of 5 minutes ( 1 minute= 1 60 degree ) ( 1 minute= 1 60 degree ) . The radius of Earth is 3960 miles.

    66.

    Find the distance along an arc on the surface of Earth that subtends a central angle of 7 minutes ( 1 minute= 1 60 degree ). ( 1 minute= 1 60 degree ). The radius of Earth is 3960 3960 miles.

    67.

    Consider a clock with an hour hand and minute hand. What is the measure of the angle the minute hand traces in 20 20 minutes?

    Extensions

    68.

    Two cities have the same longitude. The latitude of city A is 9.00 degrees north and the latitude of city B is 30.00 degree north. Assume the radius of the earth is 3960 miles. Find the distance between the two cities.

    69.

    A city is located at 40 degrees north latitude. Assume the radius of the earth is 3960 miles and the earth rotates once every 24 hours. Find the linear speed of a person who resides in this city. Refer to 5.2 Unit Circle: Sine and Cosine Functions for information on trigonometric functions.

    70.

    A city is located at 75 degrees north latitude. Assume the radius of the earth is 3960 miles and the earth rotates once every 24 hours. Find the linear speed of a person who resides in this city. Refer to 5.2 Unit Circle: Sine and Cosine Functions for information on trigonometric functions.

    71.

    Find the linear speed of the moon if the average distance between the earth and moon is 239,000 miles, assuming the orbit of the moon is circular and requires about 28 days. Express answer in miles per hour.

    72.

    A bicycle has wheels 28 inches in diameter. A tachometer determines that the wheels are rotating at 180 RPM (revolutions per minute). Find the speed the bicycle is travelling down the road.

    73.

    A car travels 3 miles. Its tires make 2640 revolutions. What is the radius of a tire in inches?

    74.

    A wheel on a tractor has a 24-inch diameter. How many revolutions does the wheel make if the tractor travels 4 miles?


    This page titled 5.2: Angles is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via source content that was edited to the style and standards of the LibreTexts platform.