Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

13.2.3: Chapter 3

( \newcommand{\kernel}{\mathrm{null}\,}\)

Try It

3.1 Complex Numbers

1.

−24−−−−√=0+2i6–√−24=0+2i6

2.

Graph of the plotted point, -4-i.

3.

(3−4i)−(2+5i)=1−9i(3−4i)−(2+5i)=1−9i

4.

−8−24i−8−24i

5.

18+i18+i

6.

102−29i102−29i

7.

−317+5i17−317+5i17

3.2 Quadratic Functions

1.

The path passes through the origin and has vertex at (−4,7),(−4,7), so (h)x=–716(x+4)2+7.(h)x=–716(x+4)2+7. To make the shot, h(−7.5)h(−7.5) would need to be about 4 but h(–7.5)≈1.64;h(–7.5)≈1.64; he doesn’t make it.

2.

g(x)=x2−6x+13g(x)=x2−6x+13 in general form; g(x)=(x−3)2+4g(x)=(x−3)2+4 in standard form

3.

The domain is all real numbers. The range is f(x)≥811,f(x)≥811, or [811,∞).[ 811,∞ ).

4.

y-intercept at (0, 13), No x-x- intercepts

5.

  1. ⓐ 3 seconds
  2. ⓑ 256 feet
  3. ⓒ 7 seconds

3.3 Power Functions and Polynomial Functions

1.

f(x)f(x) is a power function because it can be written as f(x)=8x5.f(x)=8x5. The other functions are not power functions.

2.

As xx approaches positive or negative infinity, f(x)f(x) decreases without bound: as x→±∞x→±∞, f(x)→−∞f(x)→−∞ because of the negative coefficient.

3.

The degree is 6. The leading term is −x6.−x6. The leading coefficient is −1.−1.

4.

As x→∞,f(x)→−∞;asx→−∞,f(x)→−∞.x→∞,f(x)→−∞;asx→−∞,f(x)→−∞. It has the shape of an even degree power function with a negative coefficient.

5.

The leading term is 0.2x3,0.2x3, so it is a degree 3 polynomial. As xx approaches positive infinity, f(x)f(x) increases without bound; as xx approaches negative infinity, f(x)f(x) decreases without bound.

6.

y-intercept (0,0);(0,0); x-intercepts (0,0),(–2,0),(0,0),(–2,0), and (5,0)(5,0)

7.

There are at most 12 x-x- intercepts and at most 11 turning points.

8.

The end behavior indicates an odd-degree polynomial function; there are 3 x-x- intercepts and 2 turning points, so the degree is odd and at least 3. Because of the end behavior, we know that the lead coefficient must be negative.

9.

The x-x- intercepts are (2,0),(−1,0),(2,0),(−1,0), and (5,0),(5,0), the y-intercept is (0,2),(0,2), and the graph has at most 2 turning points.

3.4 Graphs of Polynomial Functions

1.

y-intercept (0,0);(0,0); x-intercepts (0,0),(–5,0),(2,0),(0,0),(–5,0),(2,0), and (3,0)(3,0)

2.

The graph has a zero of –5 with multiplicity 3, a zero of –1 with multiplicity 2, and a zero of 3 with multiplicity 2.

3.

Graph of f(x)=(1/4)x(x-1)^4(x+3)^3.

4.

Because ff is a polynomial function and since f(1)f(1) is negative and f(2)f(2) is positive, there is at least one real zero between x=1x=1 and x=2.x=2.

5.

f(x)=−18(x−2)3(x+1)2(x−4)f(x)=−18(x−2)3(x+1)2(x−4)

6.

The minimum occurs at approximately the point (0,−6.5),(0,−6.5), and the maximum occurs at approximately the point (3.5,7).(3.5,7).

3.5 Dividing Polynomials

1.

4x2−8x+15−784x+54x2−8x+15−784x+5

2.

3x3−3x2+21x−150+1,090x+73x3−3x2+21x−150+1,090x+7

3.

3x2−4x+13x2−4x+1

3.6 Zeros of Polynomial Functions

1.

f(−3)=−412f(−3)=−412

2.

The zeros are 2, –2, and –4.

3.

There are no rational zeros.

4.

The zeros are –4, 12, and 1.–4, 12, and 1.

5.

f(x)=−12x3+52x2−2x+10f(x)=−12x3+52x2−2x+10

6.

There must be 4, 2, or 0 positive real roots and 0 negative real roots. The graph shows that there are 2 positive real zeros and 0 negative real zeros.

7.

3 meters by 4 meters by 7 meters

3.7 Rational Functions

1.

End behavior: as x→±∞,f(x)→0;x→±∞,f(x)→0; Local behavior: as x→0,f(x)→∞x→0,f(x)→∞ (there are no x- or y-intercepts)

2.Graph of f(x)=1/(x-3)^2-4 with its vertical asymptote at x=3 and its horizontal asymptote at y=-4.

The function and the asymptotes are shifted 3 units right and 4 units down. As x→3,f(x)→∞,x→3,f(x)→∞, and as x→±∞,f(x)→−4.x→±∞,f(x)→−4.

The function is f(x)=1(x−3)2−4.f(x)=1(x−3)2−4.

3.

12111211

4.

The domain is all real numbers except x=1x=1 and x=5.x=5.

5.

Removable discontinuity at x=5.x=5. Vertical asymptotes: x=0,x=1.x=0,x=1.

6.

Vertical asymptotes at x=2x=2 and x=–3;x=–3; horizontal asymptote at y=4.y=4.

7.

For the transformed reciprocal squared function, we find the rational form. f(x)=1(x−3)2−4=1−4(x−3)2(x−3)2=1−4(x2−6x+9)(x−3)(x−3)=−4x2+24x−35x2−6x+9f(x)=1(x−3)2−4=1−4(x−3)2(x−3)2=1−4(x2−6x+9)(x−3)(x−3)=−4x2+24x−35x2−6x+9

Because the numerator is the same degree as the denominator we know that as x→±∞,f(x)→−4;soy=–4x→±∞,f(x)→−4;soy=–4 is the horizontal asymptote. Next, we set the denominator equal to zero, and find that the vertical asymptote is x=3,x=3, because as x→3,f(x)→∞.x→3,f(x)→∞. We then set the numerator equal to 0 and find the x-intercepts are at (2.5,0)(2.5,0) and (3.5,0).(3.5,0). Finally, we evaluate the function at 0 and find the y-intercept to be at (0,−359).(0,−359).

8.

Horizontal asymptote at y=12.y=12. Vertical asymptotes at x=1andx=3.x=1andx=3. y-intercept at (0,43.)(0,43.)

x-intercepts at (2,0) and (–2,0).(2,0) and (–2,0). (–2,0)(–2,0) is a zero with multiplicity 2, and the graph bounces off the x-axis at this point. (2,0)(2,0) is a single zero and the graph crosses the axis at this point.

Graph of f(x)=(x+2)^2(x-2)/2(x-1)^2(x-3) with its vertical and horizontal asymptotes.

3.8 Inverses and Radical Functions

1.

f−1(f(x))=f−1(x+53)=3(x+53)−5=(x−5)+5=xf−1(f(x))=f−1(x+53)=3(x+53)−5=(x−5)+5=x and f(f−1(x))=f(3x−5)=(3x−5)+53=3x3=xf(f−1(x))=f(3x−5)=(3x−5)+53=3x3=x

2.

f−1(x)=x3−4f−1(x)=x3−4

3.

f−1(x)=x−1−−−−√f−1(x)=x−1

4.

f−1(x)=x2−32,x≥0f−1(x)=x2−32,x≥0

5.

f−1(x)=2x+3x−1f−1(x)=2x+3x−1

3.9 Modeling Using Variation

1.

12831283

2.

9292

3.

x=20x=20

3.1 Section Exercises

1.

Add the real parts together and the imaginary parts together.

3.

ii times ii equals –1, which is not imaginary. (answers vary)

5.

−8+2i−8+2i

7.

14+7i14+7i

9.

−2329+1529i−2329+1529i

11.

2 real and 0 nonreal

13.

Graph of the plotted point, 1-2i.

15.

Graph of the plotted point, i.

17.

8−i8−i

19.

−11+4i−11+4i

21.

2−5i2−5i

23.

6+15i6+15i

25.

−16+32i−16+32i

27.

−4−7i−4−7i

29.

25

31.

2−23i2−23i

33.

4−6i4−6i

35.

25+115i25+115i

37.

15i15i

39.

1+i3–√1+i3

41.

11

43.

−1−1

45.

128i

47.

(3√2+12i)6=−1(32+12i)6=−1

49.

3i3i

51.

0

53.

5 – 5i

55.

−2i−2i

57.

92−92i92−92i

3.2 Section Exercises

1.

When written in that form, the vertex can be easily identified.

3.

If a=0a=0 then the function becomes a linear function.

5.

If possible, we can use factoring. Otherwise, we can use the quadratic formula.

7.

g(x)=(x+1)2−4,g(x)=(x+1)2−4, Vertex (−1,−4)(−1,−4)

9.

f(x)=(x+52)2−334,f(x)=(x+52)2−334, Vertex (−52,−334)(−52,−334)

11.

f(x)=3(x−1)2−12,f(x)=3(x−1)2−12, Vertex (1,−12)(1,−12)

13.

f(x)=3(x−56)2−3712,f(x)=3(x−56)2−3712, Vertex (56,−3712)(56,−3712)

15.

Minimum is −172−172 and occurs at 52.52. Axis of symmetry is x=52.x=52.

17.

Minimum is −1716−1716 and occurs at −18.−18. Axis of symmetry is x=−18.x=−18.

19.

Minimum is −72−72 and occurs at −3.−3. Axis of symmetry is x=−3.x=−3.

21.

Domain is (−∞,∞).(−∞,∞). Range is [2,∞).[2,∞).

23.

Domain is (−∞,∞).(−∞,∞). Range is [−5,∞).[−5,∞).

25.

Domain is (−∞,∞).(−∞,∞). Range is [−12,∞).[−12,∞).

27.

{2i2–√,−2i2–√}{ 2i2,−2i2 }

29.

{3i3–√,−3i3–√}{ 3i3,−3i3 }

31.

{2+i,2−i}{2+i,2−i}

33.

{2+3i,2−3i}{2+3i,2−3i}

35.

{5+i,5−i}{5+i,5−i}

37.

{2+26–√,2−26–√}{2+26,2−26}

39.

{−12+32i,−12−32i}{ −12+32i,−12−32i }

41.

{−35+15i,−35−15i}{ −35+15i,−35−15i }

43.

{−12+12i7–√,−12−12i7–√}{ −12+12i7,−12−12i7 }

45.

f(x)=x2−4x+4f(x)=x2−4x+4

47.

f(x)=x2+1f(x)=x2+1

49.

f(x)=649x2+6049x+29749f(x)=649x2+6049x+29749

51.

f(x)=−x2+1f(x)=−x2+1

53.Graph of f(x) = x^2-2x

Vertex (1,−1),(1,−1), Axis of symmetry is x=1.x=1. Intercepts are (0,0),(2,0).(0,0),(2,0).

55.Graph of f(x)x^2-5x-6

Vertex (52,−494),(52,−494), Axis of symmetry is x=52,x=52, intercepts: (6,0),(−1,0).(6,0), (−1,0).

57.Graph of f(x)=-2x^2+5x-8

Vertex (54,−398),(54,−398), Axis of symmetry is x=54.x=54. Intercepts are (0,−8).(0,−8).

59.

f(x)=x2−4x+1f(x)=x2−4x+1

61.

f(x)=−2x2+8x−1f(x)=−2x2+8x−1

63.

f(x)=12x2−3x+72f(x)=12x2−3x+72

65.

f(x)=x2+1f(x)=x2+1

67.

f(x)=2−x2f(x)=2−x2

69.

f(x)=2x2f(x)=2x2

71.

The graph is shifted up or down (a vertical shift).

73.

50 feet

75.

Domain is (−∞,∞).(−∞,∞). Range is [−2,∞).[−2,∞).

77.

Domain is (−∞,∞)(−∞,∞) Range is (−∞,11].(−∞,11].

79.

f(x)=2x2−1f(x)=2x2−1

81.

f(x)=3x2−9f(x)=3x2−9

83.

f(x)=5x2−77f(x)=5x2−77

85.

50 feet by 50 feet. Maximize f(x)=−x2+100x.f(x)=−x2+100x.

87.

125 feet by 62.5 feet. Maximize f(x)=−2x2+250x.f(x)=−2x2+250x.

89.

66 and −6;−6; product is –36; maximize f(x)=x2+12x.f(x)=x2+12x.

91.

2909.56 meters

93.

$10.70

3.3 Section Exercises

1.

The coefficient of the power function is the real number that is multiplied by the variable raised to a power. The degree is the highest power appearing in the function.

3.

As xx decreases without bound, so does f(x).f(x). As xx increases without bound, so does f(x).f(x).

5.

The polynomial function is of even degree and leading coefficient is negative.

7.

f(x)f(x) is a power function because it contains a variable base raised to a fixed power. It is also a polynomial, with all coefficients except one equal to zero.

9.

Neither

11.

Neither

13.

Degree = 2, Coefficient = –2

15.

Degree =4, Coefficient = –2

17.

As x→∞x→∞, f(x)→∞f(x)→∞, as x→−∞x→−∞, f(x)→∞f(x)→∞

19.

As x→−∞x→−∞, f(x)→−∞f(x)→−∞, as x→∞x→∞, f(x)→−∞f(x)→−∞

21.

As x→−∞x→−∞, f(x)→−∞f(x)→−∞,as x→∞x→∞, f(x)→−∞f(x)→−∞

23.

As x→∞x→∞, f(x)→∞f(x)→∞, as x→−∞x→−∞,f(x)→−∞f(x)→−∞

25.

y-intercept is (0,12),(0,12), t-intercepts are (1,0);(–2,0);and (3,0).(1,0);(–2,0);and (3,0).

27.

y-intercept is (0,−16).(0,−16). x-intercepts are (2,0)(2,0) and (−2,0).(−2,0).

29.

y-intercept is (0,0).(0,0). x-intercepts are (0,0),(4,0),(0,0),(4,0), and (−2,0).(−2,0).

31.

3

33.

5

35.

3

37.

5

39.

Yes. Number of turning points is 2. Least possible degree is 3.

41.

Yes. Number of turning points is 1. Least possible degree is 2.

43.

Yes. Number of turning points is 0. Least possible degree is 1.

44.

No.

45.

Yes. Number of turning points is 0. Least possible degree is 1.

47.

xx f(x)f(x)
10 9,500
100 99,950,000
–10 9,500
–100 99,950,000

as x→−∞x→−∞, f(x)→∞f(x)→∞, as x→∞x→∞, f(x)→∞f(x)→∞

49.

xx f(x)f(x)
10 –504
100 –941,094
–10 1,716
–100 1,061,106

as x→−∞x→−∞, f(x)→∞f(x)→∞, as x→∞x→∞, f(x)→−∞f(x)→−∞

51.Graph of f(x)=x^3(x-2).

The y-y- intercept is (0,0).(0,0). The x-x- intercepts are (0,0),(2,0).(0,0),(2,0).As x→−∞x→−∞, f(x)→∞f(x)→∞, as x→∞x→∞, f(x)→∞f(x)→∞

53.Graph of f(x)=x(14-2x)(10-2x).

The y-y- intercept is (0,0)(0,0) . The x-x- intercepts are (0,0),(5,0),(7,0).(0,0),(5,0),(7,0). As x→−∞x→−∞, f(x)→∞f(x)→∞, as x→∞x→∞, f(x)→∞f(x)→∞

55.ea64d1049ba1b4692bb5442f811950250c6fb534

The y-y- intercept is (0,0).(0,0). The x-x- intercept is (−4,0),(0,0),(4,0).(−4,0),(0,0),(4,0). As x→−∞x→−∞, f(x)→∞f(x)→∞, as x→∞x→∞, f(x)→∞f(x)→∞

57.Graph of f(x)=x^3-27.

The y-y- intercept is (0,−81).(0,−81). The x-x- intercept are (3,0),(−3,0).(3,0),(−3,0). As x→−∞x→−∞, f(x)→∞f(x)→∞, as x→∞x→∞, f(x)→∞f(x)→∞

59.Graph of f(x)=-x^3+x^2+2x.

The y-y- intercept is (0,0).(0,0). The x-x- intercepts are (−3,0),(0,0),(5,0).(−3,0),(0,0),(5,0). As x→−∞x→−∞, f(x)→∞f(x)→∞, as x→∞x→∞, f(x)→∞f(x)→∞

61.

f(x)=x2−4f(x)=x2−4

63.

f(x)=x3−4x2+4xf(x)=x3−4x2+4x

65.

f(x)=x4+1f(x)=x4+1

67.

V(m)=8m3+36m2+54m+27V(m)=8m3+36m2+54m+27

69.

V(x)=4x3−32x2+64xV(x)=4x3−32x2+64x

3.4 Section Exercises

1.

The x-x- intercept is where the graph of the function crosses the x-x- axis, and the zero of the function is the input value for which f(x)=0.f(x)=0.

3.

If we evaluate the function at aa and at bb and the sign of the function value changes, then we know a zero exists between aa and b.b.

5.

There will be a factor raised to an even power.

7.

(−2,0),(3,0),(−5,0)(−2,0),(3,0),(−5,0)

9.

(3,0),(−1,0),(0,0)(3,0),(−1,0),(0,0)

11.

(0,0),(−5,0),(2,0)(0,0),(−5,0),(2,0)

13.

(0,0),(−5,0),(4,0)(0,0),(−5,0),(4,0)

15.

(2,0),(−2,0),(−1,0)(2,0),(−2,0),(−1,0)

17.

(−2,0),(2,0),(12,0)(−2,0),(2,0),(12,0)

19.

(1,0),(−1,0)(1,0),(−1,0)

21.

(0,0),(3–√,0),(−3–√,0)(0,0),(3,0),(−3,0)

23.

(0,0)(0,0), (1,0)(1,0), (−1,0)(−1,0), (2,0)(2,0), (−2,0)(−2,0)

25.

f(2)=–10f(2)=–10 and f(4)=28.f(4)=28. Sign change confirms.

27.

f(1)=3f(1)=3 and f(3)=–77.f(3)=–77. Sign change confirms.

29.

f(0.01)=1.000001f(0.01)=1.000001 and f(0.1)=–7.999.f(0.1)=–7.999. Sign change confirms.

31.

0 with multiplicity 2, −32−32 with multiplicity 5, 4 with multiplicity 2

33.

0 with multiplicity 2, –2 with multiplicity 2

35.

−23−23 with multiplicity 5,55,5 with multiplicity 22

37.

00 with multiplicity 4,24,2 with multiplicity 1,–11,–1 with multiplicity 11

39.

3232 with multiplicity 2, 0 with multiplicity 3

41.

00 with multiplicity 6,236,23 with multiplicity 22

43.

x-intercepts, (1, 0)(1, 0) with multiplicity 2, (–4, 0)(–4, 0) with multiplicity 1, y-y- intercept (0, 4)(0, 4) . As x→−∞x→−∞, g(x)→−∞g(x)→−∞, as x→∞x→∞, g(x)→∞g(x)→∞.

Graph of g(x)=(x+4)(x-1)^2.45.

x-intercepts (3,0)(3,0) with multiplicity 3, (2,0)(2,0) with multiplicity 2, y-y- intercept (0,–108)(0,–108). As x→−∞x→−∞, k(x)→−∞k(x)→−∞, as x→∞x→∞, k(x)→∞.k(x)→∞.

Graph of k(x)=(x-3)^3(x-2)^2.47.

x-intercepts (0, 0),(–2, 0),(4, 0)(0, 0),(–2, 0),(4, 0) with multiplicity 1, yy-intercept (0, 0).(0, 0). As x→−∞x→−∞, n(x)→∞n(x)→∞, as x→∞x→∞, n(x)→−∞.n(x)→−∞.

Graph of n(x)=-3x(x+2)(x-4).49.

f(x)=−29(x−3)(x+1)(x+3)f(x)=−29(x−3)(x+1)(x+3)

51.

f(x)=14(x+2)2(x−3)f(x)=14(x+2)2(x−3)

53.

–4, –2, 1, 3 with multiplicity 1

55.

–2, 3 each with multiplicity 2

57.

f(x)=−23(x+2)(x−1)(x−3)f(x)=−23(x+2)(x−1)(x−3)

59.

f(x)=13(x−3)2(x−1)2(x+3)f(x)=13(x−3)2(x−1)2(x+3)

61.

f(x)=−15(x−1)2(x−3)3f(x)=−15(x−1)2(x−3)3

63.

f(x)=−2(x+3)(x+2)(x−1)f(x)=−2(x+3)(x+2)(x−1)

65.

f(x)=−32(2x−1)2(x−6)(x+2)f(x)=−32(2x−1)2(x−6)(x+2)

67.

local max (–.58, –.62),(–.58, –.62), local min (.58, –1.38)(.58, –1.38)

69.

global min (–.63, –.47)(–.63, –.47)

71.

global min (.75, .89)(.75, .89)

73.

f(x)=(x−500)2(x+200)f(x)=(x−500)2(x+200)

75.

f(x)=4x3−36x2+80xf(x)=4x3−36x2+80x

77.

f(x)=4x3−36x2+60x+100f(x)=4x3−36x2+60x+100

79.

f(x)=9π(x3+5x2+8x+4)f(x)=9π(x3+5x2+8x+4)

3.5 Section Exercises

1.

The binomial is a factor of the polynomial.

3.

x+6+5x−1x+6+5x-1, quotient: x+6x+6, remainder: 55

5.

3x+23x+2, quotient: 3x+23x+2, remainder: 00

7.

x−5x−5, quotient: x−5x−5, remainder: 00

9.

2x−7+16x+22x−7+16x+2, quotient: 2x−72x−7, remainder: 1616

11.

x−2+63x+1x−2+63x+1, quotient: x−2x−2, remainder: 66

13.

2x2−3x+52x2−3x+5, quotient: 2x2−3x+52x2−3x+5, remainder: 00

15.

2x2+2x+1+10x−42x2+2x+1+10x−4

17.

2x2−7x+1−22x+12x2−7x+1−22x+1

19.

3x2−11x+34−106x+33x2−11x+34−106x+3

21.

x2+5x+1x2+5x+1

23.

4x2−21x+84−323x+44x2−21x+84−323x+4

25.

x2−14x+49x2−14x+49

27.

3x2+x+23x−13x2+x+23x−1

29.

x3−3x+1x3−3x+1

31.

x3−x2+2x3−x2+2

33.

x3−6x2+12x−8x3−6x2+12x−8

35.

x3−9x2+27x−27x3−9x2+27x−27

37.

2x3−2x+22x3−2x+2

39.

Yes (x−2)(3x3−5)(x−2)(3x3−5)

41.

Yes (x−2)(4x3+8x2+x+2)(x−2)(4x3+8x2+x+2)

43.

No

45.

(x−1)(x2+2x+4)(x−1)(x2+2x+4)

47.

(x−5)(x2+x+1)(x−5)(x2+x+1)

49.

Quotient: 4x2+8x+164x2+8x+16, remainder: −1−1

51.

Quotient: 3x2+3x+53x2+3x+5, remainder: 00

53.

Quotient: x3−2x2+4x−8x3−2x2+4x−8, remainder: −6−6

55.

x6−x5+x4−x3+x2−x+1x6−x5+x4−x3+x2−x+1

57.

x3−x2+x−1+1x+1x3−x2+x−1+1x+1

59.

1+1+ix−i1+1+ix−i

61.

1+1−ix+i1+1−ix+i

63.

x2−ix−1+1−ix−ix2−ix−1+1−ix−i

65.

2x2+32x2+3

67.

2x+32x+3

69.

x+2x+2

71.

x−3x−3

73.

3x2−23x2−2

3.6 Section Exercises

1.

The theorem can be used to evaluate a polynomial.

3.

Rational zeros can be expressed as fractions whereas real zeros include irrational numbers.

5.

Polynomial functions can have repeated zeros, so the fact that number is a zero doesn’t preclude it being a zero again.

7.

−106−106

9.

00

11.

255255

13.

−1−1

15.

−2,1,12−2,1,12

17.

−2−2

19.

−3−3

21.

−52,6–√,−6–√−52,6,−6

23.

2,−4,−322,−4,−32

25.

4,−4,−54,−4,−5

27.

5,−3,−125,−3,−12

29.

12,1+5√2,1−5√212,1+52,1−52

31.

3232

33.

2,3,−1,−22,3,−1,−2

35.

12,−12,2,−312,−12,2,−3

37.

−1,−1,5–√,−5–√−1,−1,5,−5

39.

−34,−12−34,−12

41.

2,3+2i,3−2i2,3+2i,3−2i

43.

−23,1+2i,1−2i−23,1+2i,1−2i

45.

−12,1+4i,1−4i−12,1+4i,1−4i

47.

1 positive, 1 negative

Graph of f(x)=x^4-x^2-1.49.

3 or 1 positive, 0 negative

Graph of f(x)=x^3-2x^2+x-1.51.

0 positive, 3 or 1 negative

Graph of f(x)=2x^3+37x^2+200x+300.53.

2 or 0 positive, 2 or 0 negative

Graph of f(x)=2x^4-5x^3-5x^2+5x+3.55.

2 or 0 positive, 2 or 0 negative

Graph of f(x)=10x^4-21x^2+11.57.

±5,±1,±52±5,±1,±52

59.

±1,±12,±13,±16±1,±12,±13,±16

61.

1,12,−131,12,−13

63.

2,14,−322,14,−32

65.

5454

67.

f(x)=49(x3+x2−x−1)f(x)=49(x3+x2−x−1)

69.

f(x)=−15(4x3−x)f(x)=−15(4x3−x)

71.

8 by 4 by 6 inches

73.

5.5 by 4.5 by 3.5 inches

75.

8 by 5 by 3 inches

77.

Radius = 6 meters, Height = 2 meters

79.

Radius = 2.5 meters, Height = 4.5 meters

3.7 Section Exercises

1.

The rational function will be represented by a quotient of polynomial functions.

3.

The numerator and denominator must have a common factor.

5.

Yes. The numerator of the formula of the functions would have only complex roots and/or factors common to both the numerator and denominator.

7.

All reals x≠–1,1All reals x≠–1,1

9.

All reals x≠–1,–2,1,2All reals x≠–1,–2,1,2

11.

V.A. at x=–25;x=–25; H.A. at y=0;y=0; Domain is all reals x≠–25x≠–25

13.

V.A. at x=4,–9;x=4,–9; H.A. at y=0;y=0; Domain is all reals x≠4,–9x≠4,–9

15.

V.A. at x=0,4,−4;x=0,4,−4; H.A. at y=0;y=0; Domain is all reals x≠0,4,–4x≠0,4,–4

17.

V.A. at x=5;x=5; H.A. at y=0;y=0; Domain is all reals x≠5,−5x≠5,−5

19.

V.A. at x=13;x=13; H.A. at y=−23;y=−23; Domain is all reals x≠13.x≠13.

21.

none

23.

x-intercepts none, y-intercept (0,14)x-intercepts none, y-intercept (0,14)

25.

Local behavior: x→−12+,f(x)→−∞,x→−12−,f(x)→∞x→−12+,f(x)→−∞,x→−12−,f(x)→∞

End behavior: x→±∞,f(x)→12x→±∞,f(x)→12

27.

Local behavior: x→6+,f(x)→−∞,x→6−,f(x)→∞,x→6+,f(x)→−∞,x→6−,f(x)→∞, End behavior: x→±∞,f(x)→−2x→±∞,f(x)→−2

29.

Local behavior: x→13+,f(x)→∞,x→13−,x→13+,f(x)→∞,x→13−, f(x)→−∞,x→−52−,f(x)→∞,x→−52+f(x)→−∞,x→−52−,f(x)→∞,x→−52+, f(x)→−∞f(x)→−∞

End behavior: x→±∞,x→±∞, f(x)→13f(x)→13

31.

y=2x+4y=2x+4

33.

y=2xy=2x

35.

V.A.x=0,H.A.y=2V.A.x=0,H.A.y=2

Graph of a rational function.37.

V.A.x=2,H.A.y=0V.A.x=2,H.A.y=0

Graph of a rational function.39.

V.A.x=−4,H.A.y=2;(32,0);(0,−34)V.A.x=−4,H.A.y=2;(32,0);(0,−34)

Graph of p(x)=(2x-3)/(x+4) with its vertical asymptote at x=-4 and horizontal asymptote at y=2.41.

V.A.x=2,H.A.y=0,(0,1)V.A.x=2,H.A.y=0,(0,1)

Graph of s(x)=4/(x-2)^2 with its vertical asymptote at x=2 and horizontal asymptote at y=0.43.

V.A.x=−4,x=43,H.A.y=1;(5,0);(−13,0);(0,516)V.A.x=−4,x=43,H.A.y=1;(5,0);(−13,0);(0,516)

Graph of f(x)=(3x^2-14x-5)/(3x^2+8x-16) with its vertical asymptotes at x=-4 and x=4/3 and horizontal asymptote at y=1.45.

V.A.x=−1,H.A.y=1;(−3,0);(0,3)V.A.x=−1,H.A.y=1;(−3,0);(0,3); removable discontinuity (hole) at (1,2)(1,2)

Graph of a(x)=(x^2+2x-3)/(x^2-1) with its vertical asymptote at x=-1 and horizontal asymptote at y=1.47.

V.A.x=4,S.A.y=2x+9;(−1,0);(12,0);(0,14)V.A.x=4,S.A.y=2x+9;(−1,0);(12,0);(0,14)

Graph of h(x)=(2x^2+x-1)/(x-1) with its vertical asymptote at x=4 and slant asymptote at y=2x+9.49.

V.A.x=−2,x=4,H.A.y=1,(1,0);(5,0);(−3,0);(0,−1516)V.A.x=−2,x=4,H.A.y=1,(1,0);(5,0);(−3,0);(0,−1516)

Graph of w(x)=(x-1)(x+3)(x-5)/(x+2)^2(x-4) with its vertical asymptotes at x=-2 and x=4 and horizontal asymptote at y=1.51.

y=50x2−x−2x2−25y=50x2−x−2x2−25

53.

y=7x2+2x−24x2+9x+20y=7x2+2x−24x2+9x+20

55.

y=12x2−4x+4x+1y=12x2−4x+4x+1

57.

y=4x−3x2−x−12y=4x−3x2−x−12

59.

y=−9x−2x2−9y=−9x−2x2−9

61.

y=13x2+x−6x−1y=13x2+x−6x−1

63.

y=−6(x−1)2(x+3)(x−2)2y=−6(x−1)2(x+3)(x−2)2

65.

xx 2.01 2.001 2.0001 1.99 1.999
yy 100 1,000 10,000 –100 –1,000
xx 10 100 1,000 10,000 100,000
yy .125 .0102 .001 .0001 .00001

Vertical asymptote x=2,x=2, Horizontal asymptote y=0y=0

67.

xx –4.1 –4.01 –4.001 –3.99 –3.999
yy 82 802 8,002 –798 –7998
xx 10 100 1,000 10,000 100,000
yy 1.4286 1.9331 1.992 1.9992 1.999992

Vertical asymptote x=−4,x=−4, Horizontal asymptote y=2y=2

69.

xx –.9 –.99 –.999 –1.1 –1.01
yy 81 9,801 998,001 121 10,201
xx 10 100 1,000 10,000 100,000
yy .82645 .9803 .998 .9998

Vertical asymptote x=−1,x=−1, Horizontal asymptote y=1y=1

71.

(32,∞)(32,∞)

Graph of f(x)=4/(2x-3).73.

(−2,1)∪(4,∞)(−2,1)∪(4,∞)

Graph of f(x)=(x+2)/(x-1)(x-4).75.

(2,4)(2,4)

77.

(2,5)(2,5)

79.

(–1,1)(–1,1)

81.

C(t)=8+2t300+20tC(t)=8+2t300+20t

83.

After about 6.12 hours.

85.

A(x)=50x2+800x.A(x)=50x2+800x. 2 by 2 by 5 feet.

87.

A(x)=πx2+100x.A(x)=πx2+100x. Radius = 2.52 meters.

3.8 Section Exercises

1.

It can be too difficult or impossible to solve for xx in terms of y.y.

3.

We will need a restriction on the domain of the answer.

5.

f−1(x)=x−−√+4f−1(x)=x+4

7.

f−1(x)=x+3−−−−√−1f−1(x)=x+3−1

9.

f−1(x)=−x−53−−−√f−1(x)=−x−53

11.

f(x)=9−x−−−−√f(x)=9−x

13.

f−1(x)=x−5−−−−√3f−1(x)=x−53

15.

f−1(x)=4−x−−−−√3f−1(x)=4−x3

17.

f−1(x)=x2−12,[0,∞)f−1(x)=x2−12,[ 0,∞ )

19.

f−1(x)=(x−9)2+44,[9,∞)f−1(x)=(x−9)2+44,[ 9,∞ )

21.

f−1(x)=(x−92)3f−1(x)=(x−92)3

23.

f−1(x)=2−8xxf−1(x)=2−8xx

25.

f−1(x)=7x−31−xf−1(x)=7x−31−x

27.

f−1(x)=5x−44x+3f−1(x)=5x−44x+3

29.

f−1(x)=x+1−−−−√−1f−1(x)=x+1−1

31.

f−1(x)=x+6−−−−√+3f−1(x)=x+6+3

33.

f−1(x)=4−x−−−−√f−1(x)=4−x

Graph of f(x)=4- x^2 and its inverse, f^(-1)(x)= sqrt(4-x).35.

f−1(x)=x−−√+4f−1(x)=x+4

Graph of f(x)= (x-4)^2 and its inverse, f^(-1)(x)= sqrt(x)+4.37.

f−1(x)=1−x−−−−√3f−1(x)=1−x3

Graph of f(x)= 1-x^3 and its inverse, f^(-1)(x)= (1-x)^(1/3).39.

f−1(x)=x+8−−−−√+3f−1(x)=x+8+3

Graph of f(x)= x^2-6x+1 and its inverse, f^(-1)(x)= sqrt(x+8)+3.41.

f−1(x)=1x−−√f−1(x)=1x

Graph of f(x)= 1/x^2 and its inverse, f^(-1)(x)= sqrt(1/x).43.

[−2,1)∪[3,∞)[−2,1)∪[3,∞)

Graph of f(x)= sqrt((x+2)(x-3)/(x-1)).45.

[−4,2)∪[5,∞)[−4,2)∪[5,∞)

Graph of f(x)= sqrt((x^2-x-20)/(x-2)).47.

(–2,0);(4,2);(22,3)(–2,0);(4,2);(22,3)

Graph of f(x)= x^3-x-2.49.

(–4,0);(0,1);(10,2)(–4,0);(0,1);(10,2)

Graph of f(x)= x^3+3x-4.51.

(–3,−1);(1,0);(7,1)(–3,−1);(1,0);(7,1)

Graph of f(x)= x^4+5x+1.53.

f−1(x)=x+b24−−−−−√−b2f−1(x)=x+b24−b2

55.

f−1(x)=x3−baf−1(x)=x3−ba

57.

t(h)=200−h4.9−−−−−√,t(h)=200−h4.9, 5.53 seconds

59.

r(V)=3V4π−−−√3,r(V)=3V4π3, 3.63 feet

61.

n(C)=100C−250.6−C,n(C)=100C−250.6−C, 250 mL

63.

r(V)=V6π−−√,r(V)=V6π, 3.99 meters

65.

r(V)=V4π−−√,r(V)=V4π, 1.99 inches

3.9 Section Exercises

1.

The graph will have the appearance of a power function.

3.

No. Multiple variables may jointly vary.

5.

y=5x2y=5x2

7.

y=11944x3y=11944x3

9.

y=6x4y=6x4

11.

y=18x2y=18x2

13.

y=81x4y=81x4

15.

y=20x√3y=20x3

17.

y=10xzwy=10xzw

19.

y=10xz√y=10xz

21.

y=4xzwy=4xzw

23.

y=40xzw√t2y=40xzwt2

25.

y=256y=256

27.

y=6y=6

29.

y=6y=6

31.

y=27y=27

33.

y=3y=3

35.

y=18y=18

37.

y=90y=90

39.

y=812y=812

41.

y=34x2y=34x2

Graph of y=3/4(x^2).43.

y=13x−−√y=13x

Graph of y=1/3sqrt(x).45.

y=4x2y=4x2

Graph of y=4/(x^2).47.

≈ 1.89 years

49.

≈ 0.61 years

51.

3 seconds

53.

48 inches

55.

≈ 49.75 pounds

57.

≈ 33.33 amperes

59.

≈ 2.88 inches

Review Exercises

1.

2−2i2−2i

3.

24+3i24+3i

5.

{2+i,2−i}{2+i,2−i}

7.

f(x)=(x−2)2−9vertex(2,–9),intercepts(5,0);(–1,0);(0,–5)f(x)=(x−2)2−9vertex(2,–9),intercepts(5,0);(–1,0);(0,–5)

Graph of f(x)=x^2-4x-5.9.

f(x)=325(x+2)2+3f(x)=325(x+2)2+3

11.

300 meters by 150 meters, the longer side parallel to river.

13.

Yes, degree = 5, leading coefficient = 4

15.

Yes, degree = 4, leading coefficient = 1

17.

Asx→−∞,f(x)→−∞,asx→∞,f(x)→∞Asx→−∞,f(x)→−∞,asx→∞,f(x)→∞

19.

–3 with multiplicity 2, −12−12 with multiplicity 1, –1 with multiplicity 3

21.

4 with multiplicity 1

23.

1212 with multiplicity 1, 3 with multiplicity 3

25.

x2+4x2+4with remainder 12

27.

x2−5x+20−61x+3x2−5x+20−61x+3

29.

2x2−2x−32x2−2x−3, so factored form is (x+4)(2x2−2x−3)(x+4)(2x2−2x−3)

31.

{−2,4,−12}{ −2,4,−12 }

33.

{1,3,4,12}{ 1,3,4,12 }

35.

0 or 2 positive, 1 negative

37.

Intercepts (–2,0)and(0,−25)(–2,0)and(0,−25), Asymptotes x=5x=5 and y=1.y=1.

Graph of f(x)=(x+1)/(x-5).39.

Intercepts (3, 0), (-3, 0), and (0,272)(0,272), Asymptotes x=1,x=–2,y=3.x=1,x=–2,y=3.

Graph of f(x)=(3x^2-27)/(x^2+x-2).41.

y=x−2y=x−2

43.

f−1(x)=x−−√+2f−1(x)=x+2

45.

f−1(x)=x+11−−−−−√−3f−1(x)=x+11−3

47.

f−1(x)=(x+3)2−54,x≥−3f−1(x)=(x+3)2−54,x≥−3

49.

y=64y=64

51.

y=72y=72

53.

148.5 pounds

Practice Test

1.

20−10i20−10i

3.

{2+3i,2−3i}{2+3i,2−3i}

5.

Asx→−∞,f(x)→−∞,asx→∞,f(x)→∞Asx→−∞,f(x)→−∞,asx→∞,f(x)→∞

7.

f(x)=(x+1)2−9f(x)=(x+1)2−9, vertex (−1,−9)(−1,−9), intercepts (2,0);(−4,0);(0,−8)(2,0);(−4,0);(0,−8)

Graph of f(x)=x^2+2x-8.9.

60,000 square feet

11.

0 with multiplicity 4, 3 with multiplicity 2

13.

2x2−4x+11−26x+22x2−4x+11−26x+2

15.

2x2−x−42x2−x−4. So factored form is (x+3)(2x2−x−4)(x+3)(2x2−x−4)

17.

−12−12 (has multiplicity 2), −1±i15√2−1±i152

19.

−2−2 (has multiplicity 3), ±i±i

21.

f(x)=2(2x−1)3(x+3)f(x)=2(2x−1)3(x+3)

23.

Intercepts (−4,0),(0,−43)(−4,0),(0,−43), Asymptotes x=3,x=−1,y=0x=3,x=−1,y=0.

Graph of f(x)=(x+4)/(x^2-2x-3).25.

y=x+4y=x+4

27.

f−1(x)=x+43−−−√3f−1(x)=x+433

29.

y=18y=18

31.

4 seconds


13.2.3: Chapter 3 is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

  • Was this article helpful?

Support Center

How can we help?