13.2.4: Chapter 4
- Page ID
- 117279
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Try It
4.1 Exponential Functions
1.
g(x)=0.875xg(x)=0.875x and j(x)=1095.6−2xj(x)=1095.6−2x represent exponential functions.
2.
5.55565.5556
3.
About 1.5481.548 billion people; by the year 2031, India’s population will exceed China’s by about 0.001 billion, or 1 million people.
4.
(0,129)(0,129) and (2,236);N(t)=129(1.3526)t(2,236);N(t)=129(1.3526)t
5.
f(x)=2(1.5)xf(x)=2(1.5)x
6.
f(x)=2–√(2–√)x.f(x)=2(2)x. Answers may vary due to round-off error. The answer should be very close to 1.4142(1.4142)x.1.4142(1.4142)x.
7.
y≈12⋅1.85xy≈12⋅1.85x
8.
about $3,644,675.88
9.
$13,693
10.
e−0.5≈0.60653e−0.5≈0.60653
11.
$3,659,823.44
12.
3.77E-26 (This is calculator notation for the number written as 3.77×10−263.77×10−26 in scientific notation. While the output of an exponential function is never zero, this number is so close to zero that for all practical purposes we can accept zero as the answer.)
4.2 Graphs of Exponential Functions
1.
The domain is (−∞,∞);(−∞,∞); the range is (0,∞);(0,∞); the horizontal asymptote is y=0.y=0.
2.
The domain is (−∞,∞);(−∞,∞); the range is (3,∞);(3,∞); the horizontal asymptote is y=3.y=3.
3.
x≈−1.608x≈−1.608
4.
The domain is (−∞,∞);(−∞,∞); the range is (0,∞);(0,∞); the horizontal asymptote is y=0.y=0.
5.
The domain is (−∞,∞);(−∞,∞); the range is (0,∞);(0,∞); the horizontal asymptote is y=0.y=0.
6.
f(x)=−13ex−2;f(x)=−13ex−2; the domain is (−∞,∞);(−∞,∞); the range is (−∞,−2);(−∞,−2); the horizontal asymptote is y=−2.y=−2.
4.3 Logarithmic Functions
1.
- ⓐlog10(1,000,000)=6log10(1,000,000)=6 is equivalent to 106=1,000,000106=1,000,000
- ⓑlog5(25)=2log5(25)=2 is equivalent to 52=2552=25
2.
- ⓐ 32=932=9 is equivalent to log3(9)=2log3(9)=2
- ⓑ 53=12553=125 is equivalent to log5(125)=3log5(125)=3
- ⓒ 2−1=122−1=12 is equivalent to log2(12)=−1log2(12)=−1
3.
log121(11)=12log121(11)=12 (recalling that 121−−−√=(121)12=11121=(121)12=11 )
4.
log2(132)=−5log2(132)=−5
5.
log(1,000,000)=6log(1,000,000)=6
6.
log(123)≈2.0899log(123)≈2.0899
7.
The difference in magnitudes was about 3.929.3.929.
8.
It is not possible to take the logarithm of a negative number in the set of real numbers.
4.4 Graphs of Logarithmic Functions
1.
(2,∞)(2,∞)
2.
(5,∞)(5,∞)
3.
The domain is (0,∞),(0,∞), the range is (−∞,∞),(−∞,∞), and the vertical asymptote is x=0.x=0.
4.
The domain is (−4,∞),(−4,∞), the range (−∞,∞),(−∞,∞), and the asymptote x=–4.x=–4.
5.
The domain is (0,∞),(0,∞), the range is (−∞,∞),(−∞,∞), and the vertical asymptote is x=0.x=0.
6.
The domain is (0,∞),(0,∞), the range is (−∞,∞),(−∞,∞), and the vertical asymptote is x=0.x=0.
7.
The domain is (2,∞),(2,∞), the range is (−∞,∞),(−∞,∞), and the vertical asymptote is x=2.x=2.
8.
The domain is (−∞,0),(−∞,0), the range is (−∞,∞),(−∞,∞), and the vertical asymptote is x=0.x=0.
9.
x≈3.049x≈3.049
10.
x=1x=1
11.
f(x)=2ln(x+3)−1f(x)=2ln(x+3)−1
4.5 Logarithmic Properties
1.
logb2+logb2+logb2+logbk=3logb2+logbklogb2+logb2+logb2+logbk=3logb2+logbk
2.
log3(x+3)−log3(x−1)−log3(x−2)log3(x+3)−log3(x−1)−log3(x−2)
3.
2lnx2lnx
4.
−2ln(x)−2ln(x)
5.
log316log316
6.
2logx+3logy−4logz2logx+3logy−4logz
7.
23lnx23lnx
8.
12ln(x−1)+ln(2x+1)−ln(x+3)−ln(x−3)12ln(x−1)+ln(2x+1)−ln(x+3)−ln(x−3)
9.
log(3⋅54⋅6);log(3⋅54⋅6); can also be written log(58)log(58) by reducing the fraction to lowest terms.
10.
log(5(x−1)3x√(7x−1))log(5(x−1)3x(7x−1))
11.
logx12(x+5)4(2x+3)4;logx12(x+5)4(2x+3)4; this answer could also be written log(x3(x+5)(2x+3))4.log(x3(x+5)(2x+3))4.
12.
The pH increases by about 0.301.
13.
ln8ln0.5ln8ln0.5
14.
ln100ln5≈4.60511.6094=2.861ln100ln5≈4.60511.6094=2.861
4.6 Exponential and Logarithmic Equations
1.
x=−2x=−2
2.
x=−1x=−1
3.
x=12x=12
4.
The equation has no solution.
5.
x=ln3ln(23/)x=ln3ln(23)
6.
t=2ln(113)t=2ln(113) or ln(113)2ln(113)2
7.
t=ln(12√)=−12ln(2)t=ln(12)=−12ln(2)
8.
x=ln2x=ln2
9.
x=e4x=e4
10.
x=e5−1x=e5−1
11.
x≈9.97x≈9.97
12.
x=1x=1 or x=−1x=−1
13.
t=703,800,000×ln(0.8)ln(0.5)years ≈226,572,993years.t=703,800,000×ln(0.8)ln(0.5)years ≈226,572,993years.
4.7 Exponential and Logarithmic Models
1.
f(t)=A0e−0.0000000087tf(t)=A0e−0.0000000087t
2.
less than 230 years, 229.3157 to be exact
3.
f(t)=A0eln23tf(t)=A0eln23t
4.
6.026 hours
5.
895 cases on day 15
6.
Exponential. y=2e0.5x.y=2e0.5x.
7.
y=3e(ln0.5)xy=3e(ln0.5)x
4.8 Fitting Exponential Models to Data
1.
- ⓐ The exponential regression model that fits these data is y=522.88585984(1.19645256)x.y=522.88585984(1.19645256)x.
- ⓑ If spending continues at this rate, the graduate’s credit card debt will be $4,499.38 after one year.
2.
- ⓐ The logarithmic regression model that fits these data is y=141.91242949+10.45366573ln(x)y=141.91242949+10.45366573ln(x)
- ⓑ If sales continue at this rate, about 171,000 games will be sold in the year 2015.
3.
- ⓐ The logistic regression model that fits these data is y=25.656659791+6.113686306e−0.3852149008x.y=25.656659791+6.113686306e−0.3852149008x.
- ⓑ If the population continues to grow at this rate, there will be about 25,634 25,634 seals in 2020.
- ⓒ To the nearest whole number, the carrying capacity is 25,657.
4.1 Section Exercises
1.
Linear functions have a constant rate of change. Exponential functions increase based on a percent of the original.
3.
When interest is compounded, the percentage of interest earned to principal ends up being greater than the annual percentage rate for the investment account. Thus, the annual percentage rate does not necessarily correspond to the real interest earned, which is the very definition of nominal.
5.
exponential; the population decreases by a proportional rate. .
7.
not exponential; the charge decreases by a constant amount each visit, so the statement represents a linear function. .
9.
The forest represented by the function B(t)=82(1.029)t.B(t)=82(1.029)t.
11.
After t=20t=20 years, forest A will have 4343 more trees than forest B.
13.
Answers will vary. Sample response: For a number of years, the population of forest A will increasingly exceed forest B, but because forest B actually grows at a faster rate, the population will eventually become larger than forest A and will remain that way as long as the population growth models hold. Some factors that might influence the long-term validity of the exponential growth model are drought, an epidemic that culls the population, and other environmental and biological factors.
15.
exponential growth; The growth factor, 1.06,1.06, is greater than 1.1.
17.
exponential decay; The decay factor, 0.97,0.97, is between 00 and 1.1.
19.
f(x)=2000(0.1)xf(x)=2000(0.1)x
21.
f(x)=(16)−35(16)x5≈2.93(0.699)xf(x)=(16)−35(16)x5≈2.93(0.699)x
23.
Linear
25.
Neither
27.
Linear
29.
$10,250$10,250
31.
$13,268.58$13,268.58
33.
P=A(t)⋅(1+rn)−ntP=A(t)⋅(1+rn)−nt
35.
$4,572.56$4,572.56
37.
4%4%
39.
continuous growth; the growth rate is greater than 0.0.
41.
continuous decay; the growth rate is less than 0.0.
43.
$669.42$669.42
45.
f(−1)=−4f(−1)=−4
47.
f(−1)≈−0.2707f(−1)≈−0.2707
49.
f(3)≈483.8146f(3)≈483.8146
51.
y=3⋅5xy=3⋅5x
53.
y≈18⋅1.025xy≈18⋅1.025x
55.
y≈0.2⋅1.95xy≈0.2⋅1.95x
57.
APY=A(t)−aa=a(1+r365)365(1)−aa=a[(1+r365)365−1]a=(1+r365)365−1;APY=A(t)−aa=a(1+r365)365(1)−aa=a[ (1+r365)365−1 ]a=(1+r365)365−1; I(n)=(1+rn)n−1I(n)=(1+rn)n−1
59.
Let ff be the exponential decay function f(x)=a⋅(1b)xf(x)=a⋅(1b)x such that b>1.b>1. Then for some number n>0,n>0, f(x)=a⋅(1b)x=a(b−1)x=a((en)−1)x=a(e−n)x=a(e)−nx.f(x)=a⋅(1b)x=a(b−1)x=a((en)−1)x=a(e−n)x=a(e)−nx.
61.
47,62247,622 fox
63.
1.39%;1.39%; $155,368.09$155,368.09
65.
$35,838.76$35,838.76
67.
$82,247.78;$82,247.78; $449.75$449.75
4.2 Section Exercises
1.
An asymptote is a line that the graph of a function approaches, as xx either increases or decreases without bound. The horizontal asymptote of an exponential function tells us the limit of the function’s values as the independent variable gets either extremely large or extremely small.
3.
g(x)=4(3)−x;g(x)=4(3)−x; y-intercept: (0,4);(0,4); Domain: all real numbers; Range: all real numbers greater than 0.0.
5.
g(x)=−10x+7;g(x)=−10x+7; y-intercept: (0,6);(0,6); Domain: all real numbers; Range: all real numbers less than 7.7.
7.
g(x)=2(14)x;g(x)=2(14)x; y-intercept: (0,2);(0,2); Domain: all real numbers; Range: all real numbers greater than 0.0.
9.
y-intercept: (0,−2)(0,−2)
11.
13.
B
15.
A
17.
E
19.
D
21.
C
23.
25.
27.
Horizontal asymptote: h(x)=3;h(x)=3; Domain: all real numbers; Range: all real numbers strictly greater than 3.3.
29.
As x→∞x→∞ , f(x)→−∞f(x)→−∞ ;
As x→−∞x→−∞ , f(x)→−1f(x)→−1
31.
As x→∞x→∞ , f(x)→2f(x)→2 ;
As x→−∞x→−∞ , f(x)→∞f(x)→∞
33.
f(x)=4x−3f(x)=4x−3
35.
f(x)=4x−5f(x)=4x−5
37.
f(x)=4−xf(x)=4−x
39.
y=−2x+3y=−2x+3
41.
y=−2(3)x+7y=−2(3)x+7
43.
g(6)=800+13≈800.3333g(6)=800+13≈800.3333
45.
h(−7)=−58h(−7)=−58
47.
x≈−2.953x≈−2.953
49.
x≈−0.222x≈−0.222
51.
The graph of G(x)=(1b)xG(x)=(1b)x is the refelction about the y-axis of the graph of F(x)=bx;F(x)=bx; For any real number b>0b>0 and function f(x)=bx,f(x)=bx, the graph of (1b)x(1b)x is the the reflection about the y-axis, F(−x).F(−x).
53.
The graphs of g(x)g(x) and h(x)h(x) are the same and are a horizontal shift to the right of the graph of f(x);f(x); For any real number n, real number b>0,b>0, and function f(x)=bx,f(x)=bx, the graph of (1bn)bx(1bn)bx is the horizontal shift f(x−n).f(x−n).
4.3 Section Exercises
1.
A logarithm is an exponent. Specifically, it is the exponent to which a base bb is raised to produce a given value. In the expressions given, the base bb has the same value. The exponent, y,y, in the expression byby can also be written as the logarithm, logbx,logbx, and the value of xx is the result of raising bb to the power of y.y.
3.
Since the equation of a logarithm is equivalent to an exponential equation, the logarithm can be converted to the exponential equation by=x,by=x, and then properties of exponents can be applied to solve for x.x.
5.
The natural logarithm is a special case of the logarithm with base bb in that the natural log always has base e.e. Rather than notating the natural logarithm as loge(x),loge(x), the notation used is ln(x).ln(x).
7.
ac=bac=b
9.
xy=64xy=64
11.
15b=a15b=a
13.
13a=14213a=142
15.
en=wen=w
17.
logc(k)=dlogc(k)=d
19.
log19y=xlog19y=x
21.
logn(103)=4logn(103)=4
23.
logy(39100)=xlogy(39100)=x
25.
ln(h)=kln(h)=k
27.
x=2−3=18x=2−3=18
29.
x=33=27x=33=27
31.
x=912=3x=912=3
33.
x=6−3=1216x=6−3=1216
35.
x=e2x=e2
37.
3232
39.
1.061.06
41.
14.12514.125
43.
1212
45.
44
47.
−3−3
49.
−12−12
51.
00
53.
1010
55.
2.7082.708
57.
0.1510.151
59.
No, the function has no defined value for x=0.x=0. To verify, suppose x=0x=0 is in the domain of the function f(x)=log(x).f(x)=log(x). Then there is some number nn such that n=log(0).n=log(0). Rewriting as an exponential equation gives: 10n=0,10n=0, which is impossible since no such real number nn exists. Therefore, x=0x=0 is not the domain of the function f(x)=log(x).f(x)=log(x).
61.
Yes. Suppose there exists a real number xx such that lnx=2.lnx=2. Rewriting as an exponential equation gives x=e2,x=e2, which is a real number. To verify, let x=e2.x=e2. Then, by definition, ln(x)=ln(e2)=2.ln(x)=ln(e2)=2.
63.
No; ln(1)=0,ln(1)=0, so ln(e1.725)ln(1)ln(e1.725)ln(1) is undefined.
65.
22
4.4 Section Exercises
1.
Since the functions are inverses, their graphs are mirror images about the line y=x.y=x. So for every point (a,b)(a,b) on the graph of a logarithmic function, there is a corresponding point (b,a)(b,a) on the graph of its inverse exponential function.
3.
Shifting the function right or left and reflecting the function about the y-axis will affect its domain.
5.
No. A horizontal asymptote would suggest a limit on the range, and the range of any logarithmic function in general form is all real numbers.
7.
Domain: (−∞,12);(−∞,12); Range: (−∞,∞)(−∞,∞)
9.
Domain: (−174,∞);(−174,∞); Range: (−∞,∞)(−∞,∞)
11.
Domain: (5,∞);(5,∞); Vertical asymptote: x=5x=5
13.
Domain: (−13,∞);(−13,∞); Vertical asymptote: x=−13x=−13
15.
Domain: (−3,∞);(−3,∞); Vertical asymptote: x=−3x=−3
17.
Domain: (37,∞)(37,∞) ;
Vertical asymptote: x=37x=37 ; End behavior: as x→(37)+,f(x)→−∞x→(37)+,f(x)→−∞ and as x→∞,f(x)→∞x→∞,f(x)→∞
19.
Domain: (−3,∞)(−3,∞) ; Vertical asymptote: x=−3x=−3 ;
End behavior: as x→−3+x→−3+ , f(x)→−∞f(x)→−∞ and as x→∞x→∞ , f(x)→∞f(x)→∞
21.
Domain: (1,∞);(1,∞); Range: (−∞,∞);(−∞,∞); Vertical asymptote: x=1;x=1; x-intercept: (54,0);(54,0); y-intercept: DNE
23.
Domain: (−∞,0);(−∞,0); Range: (−∞,∞);(−∞,∞); Vertical asymptote: x=0;x=0; x-intercept: (−e2,0);(−e2,0); y-intercept: DNE
25.
Domain: (0,∞);(0,∞); Range: (−∞,∞);(−∞,∞); Vertical asymptote: x=0;x=0; x-intercept: (e3,0);(e3,0); y-intercept: DNE
27.
B
29.
C
31.
B
33.
C
35.
37.
39.
C
41.
43.
45.
47.
f(x)=log2(−(x−1))f(x)=log2(−(x−1))
49.
f(x)=3log4(x+2)f(x)=3log4(x+2)
51.
x=2x=2
53.
x≈2.303x≈2.303
55.
x≈−0.472x≈−0.472
57.
The graphs of f(x)=log12(x)f(x)=log12(x) and g(x)=−log2(x)g(x)=−log2(x) appear to be the same; Conjecture: for any positive base b≠1,b≠1, logb(x)=−log1b(x).logb(x)=−log1b(x).
59.
Recall that the argument of a logarithmic function must be positive, so we determine where x+2x−4>0x+2x−4>0 . From the graph of the function f(x)=x+2x−4,f(x)=x+2x−4, note that the graph lies above the x-axis on the interval (−∞,−2)(−∞,−2) and again to the right of the vertical asymptote, that is (4,∞).(4,∞). Therefore, the domain is (−∞,−2)∪(4,∞).(−∞,−2)∪(4,∞).
4.5 Section Exercises
1.
Any root expression can be rewritten as an expression with a rational exponent so that the power rule can be applied, making the logarithm easier to calculate. Thus, logb(x1n)=1nlogb(x).logb(x1n)=1nlogb(x).
3.
logb(2)+logb(7)+logb(x)+logb(y)logb(2)+logb(7)+logb(x)+logb(y)
5.
logb(13)−logb(17)logb(13)−logb(17)
7.
−kln(4)−kln(4)
9.
ln(7xy)ln(7xy)
11.
logb(4)logb(4)
13.
logb(7)logb(7)
15.
15log(x)+13log(y)−19log(z)15log(x)+13log(y)−19log(z)
17.
32log(x)−2log(y)32log(x)−2log(y)
19.
83log(x)+143log(y)83log(x)+143log(y)
21.
ln(2x7)ln(2x7)
23.
log(xz3y√)log(xz3y)
25.
log7(15)=ln(15)ln(7)log7(15)=ln(15)ln(7)
27.
log11(5)=log5(5)log5(11)=1blog11(5)=log5(5)log5(11)=1b
29.
log11(611)=log5(611)log5(11)=log5(6)−log5(11)log5(11)=a−bb=ab−1log11(611)=log5(611)log5(11)=log5(6)−log5(11)log5(11)=a−bb=ab−1
31.
33
33.
2.813592.81359
35.
0.939130.93913
37.
−2.23266−2.23266
39.
x=4;x=4; By the quotient rule: log6(x+2)−log6(x−3)=log6(x+2x−3)=1.log6(x+2)−log6(x−3)=log6(x+2x−3)=1.
Rewriting as an exponential equation and solving for x:x:
610000x=x+2x−3=x+2x−3−6=x+2x−3−6(x−3)(x−3)=x+2−6x+18x−3=x−4x−3=461=x+2x−30=x+2x−3−60=x+2x−3−6(x−3)(x−3)0=x+2−6x+18x−30=x−4x−3x=4
Checking, we find that log6(4+2)−log6(4−3)=log6(6)−log6(1)log6(4+2)−log6(4−3)=log6(6)−log6(1) is defined, so x=4.x=4.
41.
Let bb and nn be positive integers greater than 1.1. Then, by the change-of-base formula, logb(n)=logn(n)logn(b)=1logn(b).logb(n)=logn(n)logn(b)=1logn(b).
4.6 Section Exercises
1.
Determine first if the equation can be rewritten so that each side uses the same base. If so, the exponents can be set equal to each other. If the equation cannot be rewritten so that each side uses the same base, then apply the logarithm to each side and use properties of logarithms to solve.
3.
The one-to-one property can be used if both sides of the equation can be rewritten as a single logarithm with the same base. If so, the arguments can be set equal to each other, and the resulting equation can be solved algebraically. The one-to-one property cannot be used when each side of the equation cannot be rewritten as a single logarithm with the same base.
5.
x=−13x=−13
7.
n=−1n=−1
9.
b=65b=65
11.
x=10x=10
13.
No solution
15.
p=log(178)−7p=log(178)−7
17.
k=−ln(38)3k=−ln(38)3
19.
x=ln(383)−89x=ln(383)−89
21.
x=ln12x=ln12
23.
x=ln(35)−38x=ln(35)−38
25.
no solution
27.
x=ln(3)x=ln(3)
29.
10−2=110010−2=1100
31.
n=49n=49
33.
k=136k=136
35.
x=9−e8x=9−e8
37.
n=1n=1
39.
No solution
41.
No solution
43.
x=±103x=±103
45.
x=10x=10
47.
x=0x=0
49.
x=34x=34
51.
x=9x=9
53.
x=e23≈2.5x=e23≈2.5
55.
x=−5x=−5
57.
x=e+104≈3.2x=e+104≈3.2
59.
No solution
61.
x=115≈2.2x=115≈2.2
63.
x=10111≈9.2x=10111≈9.2
65.
about $27,710.24$27,710.24
67.
about 5 years
69.
ln(17)5≈0.567ln(17)5≈0.567
71.
x=log(38)+5log(3) 4log(3)≈2.078x=log(38)+5log(3) 4log(3)≈2.078
73.
x≈2.2401x≈2.2401
75.
x≈−44655.7143x≈−44655.7143
77.
about 5.835.83
79.
t=ln((yA)1k)t=ln((yA)1k)
81.
t=ln((T−TsT0−Ts)−1k)t=ln((T−TsT0−Ts)−1k)
4.7 Section Exercises
1.
Half-life is a measure of decay and is thus associated with exponential decay models. The half-life of a substance or quantity is the amount of time it takes for half of the initial amount of that substance or quantity to decay.
3.
Doubling time is a measure of growth and is thus associated with exponential growth models. The doubling time of a substance or quantity is the amount of time it takes for the initial amount of that substance or quantity to double in size.
5.
An order of magnitude is the nearest power of ten by which a quantity exponentially grows. It is also an approximate position on a logarithmic scale; Sample response: Orders of magnitude are useful when making comparisons between numbers that differ by a great amount. For example, the mass of Saturn is 95 times greater than the mass of Earth. This is the same as saying that the mass of Saturn is about 102102 times, or 2 orders of magnitude greater, than the mass of Earth.
7.
f(0)≈16.7;f(0)≈16.7; The amount initially present is about 16.7 units.
9.
150
11.
exponential; f(x)=1.2xf(x)=1.2x
13.
logarithmic
15.
logarithmic
17.
19.
about 1.41.4 years
21.
about 7.37.3 years
23.
44 half-lives; 8.188.18 minutes
25.
M=23log(SS0)log(SS0)=32MSS0=103M2S=S0103M2M=23log(SS0)log(SS0)=32MSS0=103M2S=S0103M2
27.
Let y=bxy=bx for some non-negative real number bb such that b≠1.b≠1. Then,
ln(y)=ln(bx)ln(y)=xln(b)eln(y)=exln(b) y=exln(b)ln(y)=ln(bx)ln(y)=xln(b)eln(y)=exln(b) y=exln(b)
29.
A=125e(−0.3567t);A≈43A=125e(−0.3567t);A≈43 mg
31.
about 6060 days
33.
A(t)=250e(−0.00822t);A(t)=250e(−0.00822t); half-life: about 8484 minutes
35.
r≈−0.0667,r≈−0.0667, So the hourly decay rate is about 6.67%6.67%
37.
f(t)=1350e(0.03466t);f(t)=1350e(0.03466t); after 3 hours: P(180)≈691,200P(180)≈691,200
39.
f(t)=256e(0.068110t);f(t)=256e(0.068110t); doubling time: about 1010 minutes
41.
about 8888 minutes
43.
T(t)=90e(−0.008377t)+75,T(t)=90e(−0.008377t)+75, where tt is in minutes.
45.
about 113113 minutes
47.
log(x)=1.5;x≈31.623log(x)=1.5;x≈31.623
49.
MMS magnitude: 5.825.82
51.
N(3)≈71N(3)≈71
53.
C
4.8 Section Exercises
1.
Logistic models are best used for situations that have limited values. For example, populations cannot grow indefinitely since resources such as food, water, and space are limited, so a logistic model best describes populations.
3.
Regression analysis is the process of finding an equation that best fits a given set of data points. To perform a regression analysis on a graphing utility, first list the given points using the STAT then EDIT menu. Next graph the scatter plot using the STAT PLOT feature. The shape of the data points on the scatter graph can help determine which regression feature to use. Once this is determined, select the appropriate regression analysis command from the STAT then CALC menu.
5.
The y-intercept on the graph of a logistic equation corresponds to the initial population for the population model.
7.
C
9.
B
11.
P(0)=22P(0)=22 ; 175
13.
p≈2.67p≈2.67
15.
y-intercept: (0,15)(0,15)
17.
44 koi
19.
about 6.86.8 months.
21.
23.
About 38 wolves
25.
About 8.7 years
27.
f(x)=776.682(1.426)xf(x)=776.682(1.426)x
29.
31.
33.
f(x)=731.92e−0.3038xf(x)=731.92e-0.3038x
35.
When f(x)=250,x≈3.6f(x)=250, x≈3.6
37.
y=5.063+1.934log(x)y=5.063+1.934log(x)
39.
41.
43.
When f(10)≈2.3f(10)≈2.3
45.
When f(x)=8,x≈0.82f(x)=8, x≈0.82
47.
f(x)=25.0811+3.182e−0.545xf(x)=25.0811+3.182e−0.545x
49.
About 25
51.
53.
55.
When f(x)=68,x≈4.9f(x)=68, x≈4.9
57.
f(x)=1.034341(1.281204)xf(x)=1.034341(1.281204)x ; g(x)=4.035510g(x)=4.035510 ; the regression curves are symmetrical about y=xy=x , so it appears that they are inverse functions.
59.
f−1(x)=ln(a)−ln(cx−1)bf−1(x)=ln(a)-ln(cx-1)b
Review Exercises
1.
exponential decay; The growth factor, 0.825,0.825, is between 00 and 1.1.
3.
y=0.25(3)xy=0.25(3)x
5.
$42,888.18$42,888.18
7.
continuous decay; the growth rate is negative.
9.
domain: all real numbers; range: all real numbers strictly greater than zero; y-intercept: (0, 3.5);
11.
g(x)=7(6.5)−x;g(x)=7(6.5)−x; y-intercept: (0,7);(0,7); Domain: all real numbers; Range: all real numbers greater than 0.0.
13.
17x=491317x=4913
15.
logab=−25logab=−25
17.
x=6413=4x=6413=4
19.
log(0.000001)=−6log(0.000001)=−6
21.
ln(e−0.8648)=−0.8648ln(e−0.8648)=−0.8648
23.
25.
Domain: x>−5;x>−5; Vertical asymptote: x=−5;x=−5; End behavior: as x→−5+,f(x)→−∞x→−5+,f(x)→−∞ and as x→∞,f(x)→∞.x→∞,f(x)→∞.
27.
log8(65xy)log8(65xy)
29.
ln(zxy)ln(zxy)
31.
logy(12)logy(12)
33.
ln(2)+ln(b)+ln(b+1)−ln(b−1)2ln(2)+ln(b)+ln(b+1)−ln(b−1)2
35.
log7(v3w6u√3)log7(v3w6u3)
37.
x=log(125)log(5)+1712=53x=log(125)log(5)+1712=53
39.
x=−3x=−3
41.
no solution
43.
no solution
45.
x=ln(11)x=ln(11)
47.
a=e4−3a=e4−3
49.
x=±95x=±95
51.
about 5.455.45 years
53.
f−1(x)=24x−1−−−−−−√3f−1(x)=24x−13
55.
f(t)=300(0.83)t;f(t)=300(0.83)t;
f(24)≈3.43 gf(24)≈3.43 g
57.
about 4545 minutes
59.
about 8.58.5 days
61.
exponential
63.
y=4(0.2)x;y=4(0.2)x; y=4e-1.609438xy=4e-1.609438x
65.
about 7.27.2 days
67.
logarithmic; y=16.68718−9.71860ln(x)y=16.68718−9.71860ln(x)
Practice Test
1.
About 13 dolphins.
3.
$1,947$1,947
5.
y-intercept: (0,5)(0,5)
7.
8.5a=614.1258.5a=614.125
9.
x=(17)2=149x=(17)2=149
11.
ln(0.716)≈−0.334ln(0.716)≈−0.334
13.
Domain: x<3;x<3; Vertical asymptote: x=3;x=3; End behavior: x→3−,f(x)→−∞x→3−,f(x)→−∞ and x→−∞,f(x)→∞x→−∞,f(x)→∞
15.
logt(12)logt(12)
17.
3ln(y)+2ln(z)+ln(x−4)33ln(y)+2ln(z)+ln(x−4)3
19.
x=ln(1000)ln(16)+53≈2.497x=ln(1000)ln(16)+53≈2.497
21.
a=ln(4)+810a=ln(4)+810
23.
no solution
25.
x=ln(9)x=ln(9)
27.
x=±33√2x=±332
29.
f(t)=112e−.019792t;f(t)=112e−.019792t; half-life: about 3535 days
31.
T(t)=36e−0.025131t+35;T(60)≈43oFT(t)=36e−0.025131t+35;T(60)≈43oF
33.
logarithmic
35.
exponential; y=15.10062(1.24621)xy=15.10062(1.24621)x
37.
logistic; y=18.416591+7.54644e−0.68375xy=18.416591+7.54644e−0.68375x