Skip to main content
Mathematics LibreTexts

11.6: Circular Functions

  • Page ID
    122984
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    7.1 Transformations of Graphs

    Homework 7-1

    1. amplitude 2, period \(2\pi\), midline \(y=-3\)

    3. amplitude 1, period \(\dfrac{\pi}{2}\), midline \(y=0\)

    5. amplitude 5, period \(6\pi\), midline \(y=0\)

    7. amplitude 1, period 2, midline \(y=1\)

    9. Screen Shot 2023-02-25 at 1.36.36 PM.png

    11. Screen Shot 2023-02-25 at 1.36.43 PM.png

    13. Screen Shot 2023-02-25 at 1.36.51 PM.png

    15. Screen Shot 2023-02-25 at 1.36.58 PM.png

    17. \(y=-2 \sin x\)

    19. \(y=-2 \cos x\)

    21. \(y=-0.75 \cos x\)

    23.

    a amplitude 2, period \(\dfrac{2\pi}{3}\), midline \(y=0\)

    b \(y = -2\sin 3x\)

    25.

    a amplitude 3, period \(2\pi\), midline \(y=0\)

    b \(y = 3 \sin \dfrac{x}{2}\)

    27.

    a amplitude 0.5, period \(4\pi\), midline \(y = 3.5\)

    b \(y = 0.5 \cos \dfrac{x}{2} + 3.5\)

    29.

    a amplitude 2, period 4, midline \(y=-1\)

    b \(y = -1 + 2 \sin \dfrac{\pi x}{2}\)

    31.

    a

    \(t\) \(2t\) \(\cos 2t\) \(-5 \cos 2t\) \(2 - 5\cos 2t\)
    0 0 1 -5 -3
    \(\dfrac{\pi}{4}\) \(\dfrac{\pi}{2}\) 0 0 2
    \(\dfrac{\pi}{2}\) \(\pi\) -1 5 7
    \(\dfrac{3\pi}{4}\) \(\dfrac{3\pi}{2}\) 0 0 2
    \(\pi\) \(2\pi\) 1 -5 -3

    b Screen Shot 2023-02-25 at 1.43.53 PM.png

    33.

    a

    \(t\) \(\dfrac{t}{2}\) \(\cos \dfrac{t}{2}\) \(3 \cos \dfrac{t}{2}\) \(1 + 3 \cos \dfrac{t}{2}\)
    0 0 1 3 4
    \(\pi\) \(\dfrac{\pi}{2}\) 0 0 1
    \(2\pi\) \(\pi\) -1 -3 -2
    \(3\pi\) \(\dfrac{3\pi}{2}\) 0 0 1
    \(4\pi\) \(2\pi\) 1 3 4

    b Screen Shot 2023-02-25 at 1.46.33 PM.png

    35.

    a

    \(t\) \(\dfrac{t}{3}\) \(\sin \dfrac{t}{3}\) \(2\sin \dfrac{t}{3}\) \(-3 + 2 \sin \dfrac{t}{3}\)
    0 0 0 0 -3
    \(\dfrac{3\pi}{2}\) \(\dfrac{\pi}{2}\) 1 2 -1
    \(3\pi\) \(\pi\) 0 0 -3
    \(\dfrac{9\pi}{2}\) \(\dfrac{3\pi}{2}\) -1 -2 -5
    \(6\pi\) \(2\pi\) 0 0 -3

    39. Screen Shot 2023-02-25 at 1.51.08 PM.png

    41. Screen Shot 2023-02-25 at 1.51.18 PM.png

    43. Screen Shot 2023-02-25 at 1.51.30 PM.png

    45.

    a Screen Shot 2023-02-25 at 1.51.40 PM.png

    b \(W(t) = 12 + 8 \cos \left( \dfrac{\pi t}{6} \right) \)

    47.

    a Screen Shot 2023-02-25 at 1.51.49 PM.png

    b \(h = 10 + 14 \cos \left( \dfrac{\pi t}{5} \right) \)

    49. \(H=12-2.4 \cos \left(\dfrac{\pi t}{6}\right)\)

    51. \(y=155 \cos (120 \pi t)\)

    53.

    a Screen Shot 2023-02-25 at 1.57.44 PM.png

    b period \(\dfrac{\pi}{2}\), midline \(y = 0\)

    55.

    a Screen Shot 2023-02-25 at 1.57.57 PM.png

    b period \(\dfrac{\pi}{3}\), midline \(y=4\)

    57.

    a Screen Shot 2023-02-25 at 1.58.12 PM.png

    b period \(4 \pi\), midline \(y=3\)

    59. \(\dfrac{\pi}{12}, \dfrac{5\pi}{12}, \dfrac{7\pi}{12}, \dfrac{11\pi}{12}, \dfrac{13\pi}{12}, \dfrac{17\pi}{12}, \dfrac{19\pi}{12}, \dfrac{23\pi}{12}\)

    61. \(\dfrac{7\pi}{12}, \frac{11\pi}{12}, \dfrac{19\pi}{12}, \dfrac{23\pi}{12}\)

    63. \(\dfrac{\pi}{12}, \dfrac{5 \pi}{12}, \dfrac{3 \pi}{4}, \dfrac{13 \pi}{12}, \dfrac{17 \pi}{12}, \dfrac{7 \pi}{4}\)

    65. 1.83, 2.88, 4.97, 6.02

    67. 4.19

    69. 0.28, 1.81, 2.37, 3.91, 4.47, 6.00

    7.2 The General Sinusoidal Function

    Homework 7-2

    1.

    a

    \(x\) \(-\pi\) \(\dfrac{-5\pi}{6}\) \(\dfrac{-2\pi}{3}\) \(\dfrac{-\pi}{2}\) \(\dfrac{-\pi}{3}\) \(\dfrac{-\pi}{6}\) 0 \(\dfrac{\pi}{6}\) \(\dfrac{\pi}{3}\) \(\dfrac{\pi}{2}\) \(\dfrac{2\pi}{3}\) \(\dfrac{5\pi}{6}\) \(\pi\)
    \(f(x)\) 0 \(\dfrac{-1}{2}\) \(\dfrac{-\sqrt{3}}{2}\) -1 \(\dfrac{-\sqrt{3}}{2}\) \(\dfrac{-1}{2}\) 0 \(\dfrac{1}{2}\) \(\dfrac{\sqrt{3}}{2}\) 1 \(\dfrac{\sqrt{3}}{2}\) \(\dfrac{1}{2}\) 0
    \(g(x)\) \(\dfrac{\sqrt{3}}{2}\) \(\dfrac{1}{2}\) 0 \(\dfrac{-1}{2}\) \(\dfrac{-\sqrt{3}}{2}\) -1 \(\dfrac{-\sqrt{3}}{2}\) \(\dfrac{-1}{2}\) 0 \(\dfrac{1}{2}\) \(\dfrac{\sqrt{3}}{2}\) 1 \(\dfrac{\sqrt{3}}{2}\)

    b Screen Shot 2023-02-25 at 2.11.38 PM.png

    c \(\dfrac{\pi}{3}\) to the right

    d \(\dfrac{5\pi}{6}\)

    e \(\dfrac{-2\pi}{3}, \dfrac{\pi}{3}\)

    3.

    a

    \(x\) \(-\pi\) \(\dfrac{-3\pi}{4}\) \(\dfrac{-\pi}{2}\) \(\dfrac{-\pi}{4}\) 0 \(\dfrac{\pi}{4}\) \(\dfrac{\pi}{2}\) \(\dfrac{3\pi}{4}\) \(\pi\)
    \(f(x)\) 0 1 undef -1 0 1 undef -1 0
    \(g(x)\) 1 undef -1 0 1 undef -1 0 1

    b Screen Shot 2023-02-25 at 3.36.35 PM.png

    c \(\dfrac{\pi}{4}\) to the left

    d \(-\pi, 0, \pi\)

    e \(\dfrac{-\pi}{4}, \dfrac{-3\pi}{4}\)

    5.

    a amplitude 2, shift \(\dfrac{\pi}{6}\) to the left

    b

    \(x\) \(x + \dfrac{\pi}{6}\) \(\cos \left( x + \dfrac{\pi}{6} \right) \) \(-2 \cos \left( x+ \dfrac{\pi}{6} \right) \)
    \(\dfrac{-7\pi}{6}\) \(-\pi\) -1 2
    \(\dfrac{-2\pi}{3}\) \(\dfrac{-\pi}{2}\) 0 0
    \(\dfrac{-\pi}{6}\) 0 1 -2
    \(\dfrac{\pi}{3}\) \(\dfrac{\pi}{2}\) 0 0
    \(\dfrac{5\pi}{6}\) \(\pi\) -1 2
    \(\dfrac{4\pi}{3}\) \(\dfrac{3\pi}{2}\) 0 0
    \(\dfrac{11\pi}{6}\) \(2\pi\) 1 -2

    c Screen Shot 2023-02-25 at 3.41.47 PM.png

    d \(\dfrac{\pi}{2}, \dfrac{7\pi}{6}\)

    e \(\dfrac{\pi}{3}, \dfrac{4\pi}{3}\)

    7.

    a \(f(x)=\sin \left(x+\dfrac{\pi}{4}\right)\)

    b \(f(x)=\cos \left(x-\dfrac{\pi}{4}\right)\)

    9.

    a \(f(x)=\tan \left(x-\dfrac{\pi}{3}\right)\)

    b \(f(x)=\tan \left(x+\dfrac{2 \pi}{3}\right)\)

    11.

    a period \(\pi\), shift \(\frac{\pi}{6}\) to the right

    b

    \(x\) \(2x\) \(2x - \dfrac{\pi}{3}\) \(\cos \left( 2x - \dfrac{\pi}{3} \right) \)
    \(\dfrac{\pi}{6}\) \(\dfrac{\pi}{3}\) 0 1
    \(\dfrac{5\pi}{12}\) \(\dfrac{5\pi}{6}\) \(\dfrac{\pi}{2}\) 0
    \(\dfrac{2\pi}{3}\) \(\dfrac{4\pi}{3}\) \(\pi\) -1
    \(\dfrac{11\pi}{12}\) \(\dfrac{11\pi}{6}\) \(\dfrac{3\pi}{2}\) 0
    \(\dfrac{7\pi}{6}\) \(\dfrac{7\pi}{3}\) \(2\pi\) 1

    c Screen Shot 2023-02-25 at 3.47.31 PM.png

    d \(\dfrac{\pi}{6}, \dfrac{7 \pi}{6}\)

    e \(\dfrac{5 \pi}{12}, \dfrac{11 \pi}{12}, \dfrac{13 \pi}{6}, \dfrac{23 \pi}{12}\)

    13.

    a period 2, shift \(\frac{1}{3}\) to the left

    b

    \(x\) \(\pi x\) \(\pi x + \dfrac{\pi}{3}\) \(\sin \left( \pi x + \dfrac{\pi}{3} \right) \)
    \(\dfrac{-1}{3}\) \(\dfrac{-\pi}{3}\) 0 0
    \(\dfrac{1}{6}\) \(\dfrac{\pi}{6}\) \(\dfrac{\pi}{2}\) 1
    \(\dfrac{2}{3}\) \(\dfrac{2\pi}{3}\) \(\pi\) 0
    \(\dfrac{7}{6}\) \(\dfrac{7\pi}{6}\) \(\dfrac{3\pi}{2}\) -1
    \(\dfrac{5}{3}\) \(\dfrac{5\pi}{3}\) \(2\pi\) 0

    c Screen Shot 2023-02-25 at 3.53.01 PM.png

    d \(\dfrac{-11}{6}, \dfrac{1}{6}\)

    e \(\dfrac{-4}{3}, \dfrac{-1}{3}, \dfrac{2}{3}, \dfrac{5}{3}\)

    15.

    a midline \(y=4\), period \(4 \pi\), horizontal shift \(\frac{\pi}{3}\) to the right, amplitude 3

    b

    \(x\) \(\dfrac{x}{2}\) \(\dfrac{x}{2} - \dfrac{\pi}{6}\) \(\sin \left( \dfrac{x}{2} - \dfrac{\pi}{6} \right) \) \(3 \sin \left( \dfrac{x}{2} - \dfrac{\pi}{6} \right) + 4\)
    \(\dfrac{\pi}{3}\) \(\dfrac{\pi}{6}\) 0 0 4
    \(\dfrac{4\pi}{3}\) \(\dfrac{2\pi}{3}\) \(\dfrac{\pi}{2}\) 1 7
    \(\dfrac{7\pi}{3}\) \(\dfrac{7\pi}{6}\) \(\pi\) 0 3
    \(\dfrac{10\pi}{3}\) \(\dfrac{5\pi}{3}\) \(\dfrac{3\pi}{2}\) -1 1
    \(\dfrac{13\pi}{3}\) \(\dfrac{13\pi}{6}\) \(2\pi\) 0 4

    c Screen Shot 2023-02-25 at 4.12.20 PM.png

    d no solution for \(0 \leq x \leq 2 \pi\)

    e \(\dfrac{\pi}{3}\)

    17. \(y=2 \sin \left(\dfrac{2 \pi}{3}(x+4)\right)+5\)

    Screen Shot 2023-02-25 at 4.13.25 PM.png

    19. \(y=-5 \cos \left(\dfrac{\pi x}{180}\right)+12\)

    Screen Shot 2023-02-25 at 4.14.03 PM.png

    21.

    a \(f(x)=3 \sin \left(x+\dfrac{2 \pi}{3}\right)\)

    b \(f(x)=3 \cos \left(x+\dfrac{\pi}{6}\right)\)

    23.

    a \(f(x)=2 \sin \left(2\left(x-\dfrac{\pi}{4}\right)\right)\)

    b \(f(x)=-2 \cos (2 x)\)

    25.

    a \(f(x)=4 \sin \left[\dfrac{1}{4}\left(x-\dfrac{7 \pi}{3}\right)\right]\)

    b \(f(x)=-4 \cos \left[\dfrac{1}{4}\left(x-\dfrac{\pi}{3}\right)\right]\)

    27.

    a midline \(T=35.35\), period 12 , amplitude 36.95

    b \(T(m)=-36.95 \cos \left(\dfrac{\pi}{6} m\right)+35.35\)

    c Screen Shot 2023-02-25 at 4.19.48 PM.png

    29.

    a midline \(h=1.4\), period \(\frac{2 \pi}{0.51} \approx 12.32\), amplitude 1.4

    b Screen Shot 2023-02-25 at 4.20.42 PM.png

    c high 11:10 am, low 5:19 pm

    31.

    a amplitude 3.2, period 2 , midline \(y=2\)

    b \(f(t)=2+3.2 \cos (\pi t)\)

    33.

    a amplitude 5, period 1 , midline \(y=0\)

    b \(H(x)=5 \sin (2 \pi x)+5\)

    7.3 Solving Equations

    Homework 7-3

    1. \(\dfrac{3 \pi}{8}, \dfrac{7 \pi}{8}, \dfrac{11 \pi}{8}, \dfrac{15 \pi}{8}\)

    3. \(0, \dfrac{\pi}{2}, \pi, \dfrac{3 \pi}{2}, 2 \pi\)

    5. \(\dfrac{2 \pi}{9}, \dfrac{4 \pi}{9}, \dfrac{8 \pi}{9}, \dfrac{10 \pi}{9}, \dfrac{14 \pi}{9}, \dfrac{16 \pi}{9}\)

    7. \(\dfrac{\pi}{12}, \dfrac{5 \pi}{12}, \dfrac{13 \pi}{12}, \dfrac{17 \pi}{12}\)

    9. \(\dfrac{\pi}{18}, \dfrac{7 \pi}{18}, \dfrac{13 \pi}{18}, \dfrac{19 \pi}{18}, \dfrac{25 \pi}{18}, \dfrac{31 \pi}{18}\)

    11. 0.491, 2.651, 3.632, 5.792

    13. 0.540, 1.325, 2.110, 2.896, 3.681, 4.467, 5.252, 6.037

    15. 1.114, 2.027, 3.209, 4.122, 5.303, 6.216

    17. 0.702, 2.440, 3.843, 5.582

    19. 0, 1, 2, 3, 4, 5, 6

    21. \(\dfrac{\pi}{6}, \dfrac{2 \pi}{3}, \dfrac{7 \pi}{6}, \dfrac{5 \pi}{3}\)

    23. \(\dfrac{5 \pi}{12}, \dfrac{7 \pi}{12}, \dfrac{13 \pi}{12}, \dfrac{5 \pi}{4}, \dfrac{7 \pi}{4}, \dfrac{23 \pi}{12}\)

    25. \(\dfrac{3\pi}{2}\)

    27. \(\dfrac{7}{6}, \dfrac{11}{6}, \dfrac{19}{6}, \dfrac{23}{6}, \dfrac{31}{6}, \dfrac{35}{6}\)

    29. 1.14, 1.62, 3.23, 3.72, 5.24, 5.81

    31. 0.44, 1.44, 2.44, 3.44, 4.44, 5.44

    33. 0.01, 3.39, 6.01

    35. 0.564, 1.182, 2.658, 3.276, 4.752, 5.371

    37. 0.423, 2.977, 4.423

    39. 1.165, 4.165

    41. 2.251

    43.

    a \(P(t)=4000 \cos \left(\dfrac{\pi}{6} t\right)+46,000\)

    b \(t=\cos ^{-1}\left(\dfrac{-1}{4}\right) \cdot \dfrac{6}{\pi} \approx 3.48\) months (Dec) or \(t=12-\cos ^{-1}\left(\dfrac{-1}{4}\right) \cdot \dfrac{6}{\pi} \approx 8.52\) months (June)

    c Screen Shot 2023-02-25 at 9.35.20 PM.png

    \(P(t)\) is less than 45,000 between \(A\) and \(B\).

    45.

    a \(h(t)=11-10 \cos \left(\dfrac{\pi}{30} t\right)\)

    b \(t=\cos (-0.7) \cdot \dfrac{30}{\pi} \approx 22.40 \mathrm{sec}\) or \(t=60-\cos (-0.7) \cdot \dfrac{30}{\pi} \approx 37.60 \mathrm{sec}\)

    c Screen Shot 2023-02-25 at 9.37.44 PM.png

    Delbert is above 18 m between \(A\) and \(B\).

    7.4 Chapter 7 Summary and Review

    Review Problems

    1. amp: 2, period: \(\frac{2 \pi}{3}\); mid: \(y=4\)

    3. amp: 2.5, period: 2; mid: \(y=-2\)

    5. Screen Shot 2023-02-25 at 9.44.02 PM.png

    7. Screen Shot 2023-02-25 at 9.44.09 PM.png

    9. \(y=3+2 \sin x\)

    11. \(y=4-3 \sin \dfrac{x}{4}\)

    13.

    a period: \(4 \pi\), shift: \(\dfrac{\pi}{3}\) left

    b

    \(x\) \(\dfrac{x}{2}\) \(\dfrac{x}{2} + \dfrac{\pi}{6}\) \(\sin \left( \dfrac{x}{2} + \dfrac{\pi}{6} \right) \)
    \(\dfrac{-2\pi}{3}\) \(\dfrac{\pi}{3}\) \(\dfrac{-\pi}{6}\) \(\dfrac{-1}{2}\)
    \(\dfrac{-\pi}{3}\) \(\dfrac{-\pi}{6}\) 0 0
    0 0 \(\dfrac{\pi}{6}\) \(\dfrac{1}{2}\)
    \(\dfrac{\pi}{6}\) \(\dfrac{\pi}{12}\) \(\dfrac{\pi}{4}\) \(\dfrac{1}{\sqrt{2}}\)
    \(\dfrac{\pi}{3}\) \(\dfrac{\pi}{6}\) \(\dfrac{\pi}{3}\) \(\dfrac{\sqrt{3}}{2}\)
    \(\dfrac{2\pi}{3}\) \(\dfrac{\pi}{3}\) \(\dfrac{\pi}{2}\) 1
    \(\pi\) \(\dfrac{\pi}{2}\) \(\dfrac{2\pi}{3}\) \(\dfrac{\sqrt{3}}{2}\)

    c Screen Shot 2023-02-25 at 9.52.19 PM.png

    d \(\dfrac{2\pi}{3}\)

    e \(\dfrac{-\pi}{3}\)

    15.

    a mid: \(y=20\), period: 0, amp: 5

    b Fill in the table of values

    \(x\) \(\dfrac{\pi}{30} x\) \(\cos \left( \dfrac{\pi}{30} x \right) \) \(20 - 5 \cos \left( \dfrac{\pi}{30} x \right) \)
    -5 \(\dfrac{-\pi}{6}\) \(\dfrac{\sqrt{3}}{2}\) \(20 - \dfrac{\sqrt{3}}{2}\)
    0 0 1 15
    5 \(\dfrac{\pi}{6}\) \(\dfrac{\sqrt{3}}{2}\) \(20 - \dfrac{\sqrt{3}}{2}\)
    10 \(\dfrac{\pi}{3}\) \(\dfrac{1}{2}\) 17.5
    15 \(\dfrac{\pi}{2}\) 0 20
    50 \(\pi\) -1 25

    c Screen Shot 2023-02-25 at 9.58.43 PM.png

    d 30

    e 15, 45

    17. Screen Shot 2023-02-25 at 9.59.11 PM.png

    19.

    a Screen Shot 2023-02-25 at 9.59.50 PM.png

    b 0.57, 3.07, 3.71

    21. \(y=85.5-19.5 \cos \dfrac{\pi}{6} t\)

    23.

    a amp: 3, period: 12, midline: \(y = 15\)

    b \(y=15-3 \cos \dfrac{\pi}{6} t\)

    25. \(\dfrac{7 \pi}{12}, \dfrac{11 \pi}{12}, \dfrac{19 \pi}{12}, \dfrac{23 \pi}{12}\)

    27. \(0, \dfrac{\pi}{4}, \dfrac{\pi}{2}, \dfrac{3 \pi}{4}, \pi, \dfrac{5 \pi}{4}, \dfrac{7 \pi}{4}, 2 \pi\)

    29. 0.066, 1.113, 2.160, 3.207, 4.255, 5.302

    31. 1.150, 1.991, 4.292, 5.133

    33. \(\dfrac{\pi}{24}, \dfrac{5 \pi}{24}, \dfrac{25 \pi}{24}, \dfrac{29 \pi}{24}\)

    35. No Solution

    37. 0.375, 1.422, 2.470, 3.517, 4.564, 5.611

    39. 2.120, 4.880


    This page titled 11.6: Circular Functions is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by Katherine Yoshiwara via source content that was edited to the style and standards of the LibreTexts platform.

    • Was this article helpful?