11.6: Circular Functions
( \newcommand{\kernel}{\mathrm{null}\,}\)
7.1 Transformations of Graphs
Homework 7-1
1. amplitude 2, period 2π, midline y=−3
3. amplitude 1, period π2, midline y=0
5. amplitude 5, period 6π, midline y=0
7. amplitude 1, period 2, midline y=1
9.
11.
13.
15.
17. y=−2sinx
19. y=−2cosx
21. y=−0.75cosx
23.
a amplitude 2, period 2π3, midline y=0
b y=−2sin3x
25.
a amplitude 3, period 2π, midline y=0
b y=3sinx2
27.
a amplitude 0.5, period 4π, midline y=3.5
b y=0.5cosx2+3.5
29.
a amplitude 2, period 4, midline y=−1
b y=−1+2sinπx2
31.
a
t | 2t | cos2t | −5cos2t | 2−5cos2t |
0 | 0 | 1 | -5 | -3 |
π4 | π2 | 0 | 0 | 2 |
π2 | π | -1 | 5 | 7 |
3π4 | 3π2 | 0 | 0 | 2 |
π | 2π | 1 | -5 | -3 |
b
33.
a
t | t2 | cost2 | 3cost2 | 1+3cost2 |
0 | 0 | 1 | 3 | 4 |
π | π2 | 0 | 0 | 1 |
2π | π | -1 | -3 | -2 |
3π | 3π2 | 0 | 0 | 1 |
4π | 2π | 1 | 3 | 4 |
b
35.
a
t | t3 | sint3 | 2sint3 | −3+2sint3 |
0 | 0 | 0 | 0 | -3 |
3π2 | π2 | 1 | 2 | -1 |
3π | π | 0 | 0 | -3 |
9π2 | 3π2 | -1 | -2 | -5 |
6π | 2π | 0 | 0 | -3 |
39.
41.
43.
45.
a
b W(t)=12+8cos(πt6)
47.
a
b h=10+14cos(πt5)
49. H=12−2.4cos(πt6)
51. y=155cos(120πt)
53.
a
b period π2, midline y=0
55.
a
b period π3, midline y=4
57.
a
b period 4π, midline y=3
59. π12,5π12,7π12,11π12,13π12,17π12,19π12,23π12
61. 7π12,11π12,19π12,23π12
63. π12,5π12,3π4,13π12,17π12,7π4
65. 1.83, 2.88, 4.97, 6.02
67. 4.19
69. 0.28, 1.81, 2.37, 3.91, 4.47, 6.00
7.2 The General Sinusoidal Function
Homework 7-2
1.
a
x | −π | −5π6 | −2π3 | −π2 | −π3 | −π6 | 0 | π6 | π3 | π2 | 2π3 | 5π6 | π |
f(x) | 0 | −12 | −√32 | -1 | −√32 | −12 | 0 | 12 | √32 | 1 | √32 | 12 | 0 |
g(x) | √32 | 12 | 0 | −12 | −√32 | -1 | −√32 | −12 | 0 | 12 | √32 | 1 | √32 |
b
c π3 to the right
d 5π6
e −2π3,π3
3.
a
x | −π | −3π4 | −π2 | −π4 | 0 | π4 | π2 | 3π4 | π |
f(x) | 0 | 1 | undef | -1 | 0 | 1 | undef | -1 | 0 |
g(x) | 1 | undef | -1 | 0 | 1 | undef | -1 | 0 | 1 |
b
c π4 to the left
d −π,0,π
e −π4,−3π4
5.
a amplitude 2, shift π6 to the left
b
x | x+π6 | cos(x+π6) | −2cos(x+π6) |
−7π6 | −π | -1 | 2 |
−2π3 | −π2 | 0 | 0 |
−π6 | 0 | 1 | -2 |
π3 | π2 | 0 | 0 |
5π6 | π | -1 | 2 |
4π3 | 3π2 | 0 | 0 |
11π6 | 2π | 1 | -2 |
c
d π2,7π6
e π3,4π3
7.
a f(x)=sin(x+π4)
b f(x)=cos(x−π4)
9.
a f(x)=tan(x−π3)
b f(x)=tan(x+2π3)
11.
a period π, shift π6 to the right
b
x | 2x | 2x−π3 | cos(2x−π3) |
π6 | π3 | 0 | 1 |
5π12 | 5π6 | π2 | 0 |
2π3 | 4π3 | π | -1 |
11π12 | 11π6 | 3π2 | 0 |
7π6 | 7π3 | 2π | 1 |
c
d π6,7π6
e 5π12,11π12,13π6,23π12
13.
a period 2, shift 13 to the left
b
x | πx | πx+π3 | sin(πx+π3) |
−13 | −π3 | 0 | 0 |
16 | π6 | π2 | 1 |
23 | 2π3 | π | 0 |
76 | 7π6 | 3π2 | -1 |
53 | 5π3 | 2π | 0 |
c
d −116,16
e −43,−13,23,53
15.
a midline y=4, period 4π, horizontal shift π3 to the right, amplitude 3
b
x | x2 | x2−π6 | sin(x2−π6) | 3sin(x2−π6)+4 |
π3 | π6 | 0 | 0 | 4 |
4π3 | 2π3 | π2 | 1 | 7 |
7π3 | 7π6 | π | 0 | 3 |
10π3 | 5π3 | 3π2 | -1 | 1 |
13π3 | 13π6 | 2π | 0 | 4 |
c
d no solution for 0≤x≤2π
e π3
17. y=2sin(2π3(x+4))+5
19. y=−5cos(πx180)+12
21.
a f(x)=3sin(x+2π3)
b f(x)=3cos(x+π6)
23.
a f(x)=2sin(2(x−π4))
b f(x)=−2cos(2x)
25.
a f(x)=4sin[14(x−7π3)]
b f(x)=−4cos[14(x−π3)]
27.
a midline T=35.35, period 12 , amplitude 36.95
b T(m)=−36.95cos(π6m)+35.35
c
29.
a midline h=1.4, period 2π0.51≈12.32, amplitude 1.4
b
c high 11:10 am, low 5:19 pm
31.
a amplitude 3.2, period 2 , midline y=2
b f(t)=2+3.2cos(πt)
33.
a amplitude 5, period 1 , midline y=0
b H(x)=5sin(2πx)+5
7.3 Solving Equations
Homework 7-3
1. 3π8,7π8,11π8,15π8
3. 0,π2,π,3π2,2π
5. 2π9,4π9,8π9,10π9,14π9,16π9
7. π12,5π12,13π12,17π12
9. π18,7π18,13π18,19π18,25π18,31π18
11. 0.491, 2.651, 3.632, 5.792
13. 0.540, 1.325, 2.110, 2.896, 3.681, 4.467, 5.252, 6.037
15. 1.114, 2.027, 3.209, 4.122, 5.303, 6.216
17. 0.702, 2.440, 3.843, 5.582
19. 0, 1, 2, 3, 4, 5, 6
21. π6,2π3,7π6,5π3
23. 5π12,7π12,13π12,5π4,7π4,23π12
25. 3π2
27. 76,116,196,236,316,356
29. 1.14, 1.62, 3.23, 3.72, 5.24, 5.81
31. 0.44, 1.44, 2.44, 3.44, 4.44, 5.44
33. 0.01, 3.39, 6.01
35. 0.564, 1.182, 2.658, 3.276, 4.752, 5.371
37. 0.423, 2.977, 4.423
39. 1.165, 4.165
41. 2.251
43.
a P(t)=4000cos(π6t)+46,000
b t=cos−1(−14)⋅6π≈3.48 months (Dec) or t=12−cos−1(−14)⋅6π≈8.52 months (June)
c
P(t) is less than 45,000 between A and B.
45.
a h(t)=11−10cos(π30t)
b t=cos(−0.7)⋅30π≈22.40sec or t=60−cos(−0.7)⋅30π≈37.60sec
c
Delbert is above 18 m between A and B.
7.4 Chapter 7 Summary and Review
Review Problems
1. amp: 2, period: 2π3; mid: y=4
3. amp: 2.5, period: 2; mid: y=−2
5.
7.
9. y=3+2sinx
11. y=4−3sinx4
13.
a period: 4π, shift: π3 left
b
x | x2 | x2+π6 | sin(x2+π6) |
−2π3 | π3 | −π6 | −12 |
−π3 | −π6 | 0 | 0 |
0 | 0 | π6 | 12 |
π6 | π12 | π4 | 1√2 |
π3 | π6 | π3 | √32 |
2π3 | π3 | π2 | 1 |
π | π2 | 2π3 | √32 |
c
d 2π3
e −π3
15.
a mid: y=20, period: 0, amp: 5
b Fill in the table of values
x | π30x | cos(π30x) | 20−5cos(π30x) |
-5 | −π6 | √32 | 20−√32 |
0 | 0 | 1 | 15 |
5 | π6 | √32 | 20−√32 |
10 | π3 | 12 | 17.5 |
15 | π2 | 0 | 20 |
50 | π | -1 | 25 |
c
d 30
e 15, 45
17.
19.
a
b 0.57, 3.07, 3.71
21. y=85.5−19.5cosπ6t
23.
a amp: 3, period: 12, midline: y=15
b y=15−3cosπ6t
25. 7π12,11π12,19π12,23π12
27. 0,π4,π2,3π4,π,5π4,7π4,2π
29. 0.066, 1.113, 2.160, 3.207, 4.255, 5.302
31. 1.150, 1.991, 4.292, 5.133
33. π24,5π24,25π24,29π24
35. No Solution
37. 0.375, 1.422, 2.470, 3.517, 4.564, 5.611
39. 2.120, 4.880