Skip to main content
Mathematics LibreTexts

11.0: Triangles and Circles

  • Page ID
    122906
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    1.1 Angles and Triangles

    Homework 1.1

    1. Screen Shot 2023-02-07 at 9.45.47 PM.png

    3. Screen Shot 2023-02-07 at 9.45.55 PM.png

    5. Screen Shot 2023-02-07 at 9.46.04 PM.png

    7. \(\theta = 108.8^{\circ}\)

    9. \(\alpha = 29^{\circ}\)

    11. \(\beta = 77^{\circ}\)

    13. \(\alpha = 12^{\circ}\)

    15. \(\theta = 65^{\circ}\)

    17. \(\theta = 22^{\circ}\)

    19. \(\psi = 73^{\circ}\)

    21. \(\phi = 88^{\circ}\)

    23.

    a \(\phi = 120^{\circ}\)

    b \(\phi=160^{\circ}\)

    c \(\phi=\alpha+\beta\)

    d An exterior angle is equal to the sum of the opposite interior angles.

    25. \(\theta=72^{\circ}, \phi=54^{\circ}\)

    27. \(\theta=100^{\circ}, \phi=30^{\circ}\)

    29.

    a \(180^{\circ}\)

    b \(90^{\circ}\)

    c a right triangle

    31.

    a \(180^{\circ}\)

    b \(90^{\circ}\)

    c a right triangle

    33. \(\alpha=30^{\circ}, \beta=60^{\circ}\)

    35. \(x=47^{\circ}, y=133^{\circ}\)

    37. \(x=60^{\circ}, y=15^{\circ}\)

    39. \(x=25^{\circ}, y=16^{\circ}\)

    41. \(x=90^{\circ}, y=55^{\circ}\)

    43. \(x=50^{\circ}, y=80^{\circ}\)

    45.

    a \(\angle 1=\angle 4, \angle 3=\angle 5\)

    b \(180^{\circ}\)

    c In the equation \(\angle 4+\angle 2+\angle 5=180^{\circ}\), substitute \(\angle 1\) for \(\angle 4\), and substitute \(\angle 3\) for \(\angle 5\) to conclude that the sum of the angles in the triangle is \(180^{\circ}\).

    47. \(\angle 1=130^{\circ}\) because vertical angles are equal. \(\angle 2=50^{\circ}\) because it makes a straight angle with a \(130^{\circ}\) angle. \(\angle 3=65^{\circ}\) because it is a base angle of an isosceles triangle whose vertex angle is \(50^{\circ}\). \(\angle 41=65^{\circ}\) for the same reason. \(\angle 5=25^{\circ}\) because it is complementary to \(\angle 4\).

    1.2 Similar Triangles

    Homework 1.2

    1. \(\triangle P Q T \simeq \triangle S R T, x=7, y=3, \alpha=18^{\circ}\)

    3. \(\triangle P R E \simeq \triangle U R N, z=12, \theta=10^{\circ}, \phi=70^{\circ}\)

    5. Screen Shot 2023-02-07 at 10.02.43 PM.png \(\triangle ABT \simeq \triangle ABC, \text{ so } AT = AC\)

    7. Similar. Corresponding sides are proportional.

    9. Similar. Corresponding angles are equal.

    11. \(\angle A=37^{\circ}, \angle B=37^{\circ}\)

    13. \(h=12\)

    15. \(p = 35\)

    17. \(g = 84\)

    19. \(h = 30\)

    21. 154 feet

    23. 1 mile

    25. 17.1 square feet

    27. \(y=\dfrac{12}{17} x\)

    29. \(h = 7.5\)

    31. \(c = 15\)

    33. \(s = 6\)

    35. \(y=\dfrac{3}{5} x\)

    37. \(y=5+\dfrac{3}{4} x\)

    39.

    a \(\angle B=70^{\circ}, \angle C A D=70^{\circ}, \angle D A B=20^{\circ}\)

    b \(\triangle D B A\) and \(\triangle D B C\). The hypotenuse is \(B C\) in \(\triangle A B C, B A\) in \(\triangle D B A\), and \(A C\) in \(\triangle D A C\). The short leg is \(A B\) in \(\triangle A B C, D B\) in \(\triangle D B A\), and \(D A\) in \(\triangle D A C\). The longer leg is \(A C\) in \(\triangle A B C, D A\) in \(\triangle D B A\), and \(D C\) in \(\triangle D A C\).

    1.3 Circles

    Homework 1.3

    1. 13 miles

    3. 10, 10.0

    5. \(4 \sqrt{5} \approx 8.94\)

    7. 5

    9. \(2 \sqrt{5}\)

    13. Screen Shot 2023-02-08 at 12.22.25 AM.png

    24.7

    15.

    a \(\sqrt{(x+3)^2+(y-4)^2}\)

    b \(\sqrt{(x+3)^2+(y-4)^2}=5\)

    17. The distance between the points \((x, y)\) and (4,-1) is 3 units.

    19.

    a \(6 \sqrt{2} \mathrm{~cm}\)

    b \(8.49 \mathrm{~cm}\)

    21.

    a \(25 \pi \mathrm{sq}\) in

    b \(78.54 \mathrm{sq}\) in

    23.

    a approximation

    b approximation

    c approximation

    d exact

    25.

    a

    \(x\) -5 -4 -3 -2 -1 0 1 2 3 4 5
    \(y\) 0 \(\pm 3\) \(\pm 4\) \(\pm \sqrt{21}\) \(\pm 2\sqrt{6}\) \(\pm 5\) \(\pm 2 \sqrt{6}\) \(\pm \sqrt{21}\) \(\pm 4\) \(\pm 3\) 0

    b Screen Shot 2023-02-08 at 12.26.37 AM.png

    27.

    a Screen Shot 2023-02-08 at 12.26.49 AM.png

    b \(x^2+y^2 = 36\)

    29.

    a Screen Shot 2023-02-08 at 12.28.07 AM.png

    b \(x^2+y^2 < 9\)

    31.

    a No real value of \(y\) can satisfy \(x^2+y^2 = 16\) unless \(-4 \leq x \leq 4\)

    b The graph has no points where \(x > 4\) and no points where \(x < -4\)

    33. \(\sqrt{10}\)

    35.

    a Screen Shot 2023-02-08 at 12.30.02 AM.png

    b \(12 \pi\)

    37.

    a Screen Shot 2023-02-08 at 12.30.14 AM.png

    b \(4\pi\)

    39. \( (-2\sqrt{5}, -4), (2\sqrt{5}, -4)\)

    Screen Shot 2023-02-08 at 12.30.24 AM.png

    41. \(P\left(\dfrac{1}{2}, \dfrac{\sqrt{3}}{2}\right), Q\left(\dfrac{1}{2}, \dfrac{-\sqrt{3}}{2}\right), R\left(\dfrac{-3}{4}, \frac{\sqrt{7}}{4}\right), S\left(\dfrac{-3}{4}, \dfrac{-\sqrt{7}}{4}\right)\)

    43.

    a \(45^{\circ}\)

    b \(5 \pi \mathrm{ft}\)

    c \(50 \pi \mathrm{sq} \mathrm{ft}\)

    45.

    a \(\dfrac{2}{5}\)

    b \(40 \pi \mathrm{sq} \mathrm{ft}\)

    c \(8 \pi \mathrm{ft}\)

    46.

    a \(\dfrac{1}{10}\)

    b \(\dfrac{\pi}{10} \mathrm{sq} \mathrm{km}\)

    c \(\dfrac{\pi}{5} \mathrm{~km}\)

    47.

    a \(\dfrac{5}{6}\)

    b \(\dfrac{15 \pi}{2}\) sq m

    c \(5 \pi \mathrm{m}\)

    51. 2070 miles

    53.

    a 54,000 miles

    b 2240 mph

    55.

    a \((x-3)^2+(y+2)^2=36\)

    b \((x-h)^2+(y-k)^2=r^2\)

    1.4 Chapter 1 Summary and Review

    Chapter 1 Review Problems

    1. Screen Shot 2023-02-08 at 12.51.09 AM.png

    3. Screen Shot 2023-02-08 at 12.51.15 AM.png

    5. \(\alpha = \beta = \gamma = 60^{\circ}\)

    7. \(\phi = \omega = 79^{\circ}\)

    9. \(\theta = 65^{\circ}, \phi = 25^{\circ}\)

    11. \(\delta = 30^{\circ}, \gamma = 60^{\circ}\)

    13. \(\sigma = 39^{\circ}, \omega = 79^{\circ}\)

    15. \(\alpha = 51 \dfrac{3}{7}^{\circ}, \beta = 64 \dfrac{2}{7}^{\circ}\)

    17. \(\triangle A B C \cong \triangle E D C, \alpha=40^{\circ}, \beta=130^{\circ}, x=32\)

    19. Yes, three pairs of equal angles

    21. Yes, three pairs of equal angles

    23. 13

    25. 18

    27. \(y = \dfrac{5x}{2}\)

    29. \(y=\dfrac{7x}{3}\)

    31. \(y = \dfrac{x}{3}\)

    33. \(x = \dfrac{25}{13}, y = \dfrac{60}{13}\)

    35. \(\alpha = 70^{\circ}\)

    37. 14 ft

    39. \(3\dfrac{3}{4}\)in

    41. All side have length \(\sqrt{61}\), opposite sides have slopes \(\frac{5}{6}\) and \(\frac{-6}{5}\)

    43. \(AC = BC = 18\)

    45.

    a \(\sqrt{(x-2)^2+(y-5)^2}=3\)

    b \((x-2)^2+(y-5)^2=9\)

    47. \(4 \sqrt{5} \approx 8.944 \mathrm{~cm}\)

    49. \(\left(\dfrac{-1}{3}, \dfrac{2 \sqrt{2}}{3}\right),\left(\dfrac{-1}{3}, \dfrac{-2 \sqrt{2}}{3}\right)\)

    51.

    a \(4 \pi \mathrm{ft}\)

    b \(20 \pi \mathrm{ft}^2\)

    53.

    a \(45^{\circ}, 60^{\circ}\)

    b \(\dfrac{49 \pi}{8}\) in \(^2, 6 \pi\) in \(^2\) Delbert

    c \(\dfrac{79 \pi}{4}\) in, \(2 \pi\) in, Francine


    This page titled 11.0: Triangles and Circles is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by Katherine Yoshiwara via source content that was edited to the style and standards of the LibreTexts platform.