Skip to main content
Mathematics LibreTexts

11.3: Trigonometric Functions

  • Page ID
    122920
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    4.1 Angles and Rotation

    Homework 4.1

    1.

    a \(216^{\circ}\)

    b \(108^{\circ}\)

    c \(480^{\circ}\)

    d \(960^{\circ}\)

    3.

    a \(\dfrac{1}{8}\)

    b \(\dfrac{5}{6}\)

    c \(\dfrac{3}{2}\)

    d \(\dfrac{7}{6}\)

    5.

    a \(\dfrac{2}{3}\)

    b \(\dfrac{5}{3}\)

    7. \(60^{\circ}\)

    9. \(60^{\circ}\)

    11. \(14^{\circ}\)

    13. \(400^{\circ} \text{ and } -320^{\circ}\) (Answers vary.)

    15. \(575^{\circ} \text{ and } -145^{\circ}\) (Answers vary.)

    17. \(665^{\circ} \text{ and } -55^{\circ}\) (Answers vary.)

    19. \(295^{\circ}\)

    21. \(70^{\circ}\)

    23. \(315^{\circ}\)

    25. \(80^{\circ}\)

    Screen Shot 2023-02-10 at 5.46.23 PM.png

    27. \(36^{\circ}\)

    Screen Shot 2023-02-10 at 5.46.30 PM.png

    29. \(63^{\circ}\)

    Screen Shot 2023-02-10 at 5.46.38 PM.png

    31. \(165^{\circ}, 95^{\circ}, 345^{\circ}\)

    Screen Shot 2023-02-10 at 5.46.46 PM.png

    33. \(140^{\circ}, 220^{\circ}, 320^{\circ}\)

    Screen Shot 2023-02-10 at 5.46.53 PM.png

    35. \(112^{\circ}, 248^{\circ}, 292^{\circ}\)

    Screen Shot 2023-02-10 at 5.46.59 PM.png

    37. −0.9205

    39. −0.7193

    41. 4.705

    43. −0.7193

    45.

    a \(120^{\circ}\)

    b \(135^{\circ}\)

    c \(150^{\circ}\)

    d \(210^{\circ}\)

    e \(225^{\circ}\)

    f \(240^{\circ}\)

    g \(300^{\circ}\)

    h \(315^{\circ}\)

    i \(330^{\circ}\)

    47.

    a Screen Shot 2023-02-10 at 5.57.07 PM.png

    b

    \begin{aligned}
    \mathrm{b} \sin 120^{\circ} & =\dfrac{\sqrt{3}}{2}, \cos 120^{\circ}=\dfrac{-1}{2}, \tan 120^{\circ}=-\sqrt{3}, \\
    \sin 240^{\circ} & =\dfrac{-\sqrt{3}}{2}, \cos 240^{\circ}=\dfrac{-1}{2}, \tan 240^{\circ}=\sqrt{3}, \\
    \sin 300^{\circ} & =\dfrac{-\sqrt{3}}{2}, \cos 300^{\circ}=\dfrac{1}{2}, \tan 300^{\circ}=-\sqrt{3}
    \end{aligned}

    49.

    a Screen Shot 2023-02-10 at 5.57.13 PM.png

    b

    \begin{aligned}
    \text { b } \sin 135^{\circ} & =\dfrac{1}{\sqrt{2}}, \quad \cos 135^{\circ}=\dfrac{-1}{\sqrt{2}}, \quad \tan 135^{\circ}=-1, \\
    \sin 225^{\circ} & =\dfrac{-1}{\sqrt{2}}, \quad \cos 225^{\circ}=\dfrac{-1}{\sqrt{2}}, \quad \tan 225^{\circ}=1, \\
    \sin 315^{\circ} & =\dfrac{-1}{\sqrt{2}}, \quad \cos 315^{\circ}=\dfrac{1}{\sqrt{2}}, \quad \tan 315^{\circ}=-1
    \end{aligned}

    51.

    a III and IV

    b II and III

    c I and III

    53.

    a \(0^{\circ}\) and \(180^{\circ}\)

    b \(90^{\circ}\) and \(270^{\circ}\)

    55. \(105^{\circ}\)

    57. \(264^{\circ}\)

    59. \(313^{\circ}\)

    61. \(83^{\circ}, 263^{\circ}\)

    63. \(23^{\circ}, 337^{\circ}\)

    65. \(265^{\circ}, 275^{\circ}\)

    67. \(156^{\circ}, 204^{\circ}\)

    69. \(246^{\circ}, 294^{\circ}\)

    71. \(149^{\circ}, 329^{\circ}\)

    73. \((-2\sqrt{2}, 2\sqrt{2})\)

    75. \((\dfrac{3}{2}, \dfrac{3\sqrt{3}}{2})\)

    77. \((\dfrac{-\sqrt{3}}{2}, \dfrac{-1}{2})\)

    79.

    a (−0.9, −0.3)

    b (−0.940, −0.342)

    c (−1.9, −0.7)

    81.

    a (−0.9, 0.3)

    b (−0.940, 0.342)

    c (−1.9, 0.7)

    83. Sides of similar triangles are proportional.

    4.2 Graphs of Trigonometric Functions

    Homework 4.2

    1. \((4 \sqrt{2},-4 \sqrt{2})\)

    3. \((-10,-10 \sqrt{3})\)

    5. \(\left(\dfrac{-15 \sqrt{3}}{2}, \dfrac{15}{2}\right)\)

    7. \((-1.25,-5.87)\)

    9. \((5.70,-11.86)\)

    11. \((9.46,-3.26)\)

    13.

    a Screen Shot 2023-02-10 at 6.04.34 PM.png

    b 15.3 mi east, 21 mi north

    15.

    a Screen Shot 2023-02-10 at 6.04.46 PM.png

    b 91.9 km west, 77.1 km south

    17.

    a Screen Shot 2023-02-10 at 6.04.54 PM.png

    b 30.9 km west, 8.3 km north

    19.

    Angle \(0^{\circ}\) \(10^{\circ}\) \(20^{\circ}\) \(30^{\circ}\) \(40^{\circ}\) \(50^{\circ}\) \(60^{\circ}\) \(70^{\circ}\) \(80^{\circ}\) \(90^{\circ}\)
    \(x\)-coordinate 1 0.98 0.94 0.97 0.77 0.64 0.5 0.34 0.17 0
    Angle \(100^{\circ}\) \(110^{\circ}\) \(120^{\circ}\) \(130^{\circ}\) \(140^{\circ}\) \(150^{\circ}\) \(160^{\circ}\) \(170^{\circ}\) \(180^{\circ}\)
    \(x\)-coordinate -0.17 -0.34 -0.5 -0.64 -0.77 -0.87 -0.94 -0.98 -1
    Angle \(190^{\circ}\) \(200^{\circ}\) \(210^{\circ}\) \(220^{\circ}\) \(230^{\circ}\) \(240^{\circ}\) \(250^{\circ}\) \(260^{\circ}\) \(270^{\circ}\)
    \(x\)-coordinate -0.98 -0.94 -0.87 -0.77 -0.64 -0.5 -0.34 -0.17 0
    Angle \(280^{\circ}\) \(290^{\circ}\) \(300^{\circ}\) \(310^{\circ}\) \(320^{\circ}\) \(330^{\circ}\) \(340^{\circ}\) \(350^{\circ}\) \(360^{\circ}\)
    \(x\)-coordinate 0.17 0.34 0.5 0.64 0.77 0.87 0.94 0.98 1

    21. Screen Shot 2023-02-10 at 6.14.34 PM.png

    23. Screen Shot 2023-02-10 at 6.14.40 PM.png

    25. Screen Shot 2023-02-10 at 6.14.44 PM.png

    27.

    a \(\left(-225^{\circ}, \dfrac{1}{\sqrt{2}}\right)\)

    b \(\left(-135^{\circ}, \dfrac{-1}{\sqrt{2}}\right)\)

    c \(\left(-90^{\circ},-1\right)\)

    d \(\left(45^{\circ}, \dfrac{1}{\sqrt{2}}\right)\)

    e \(\left(180^{\circ}, 0\right)\)

    f \(\left(315^{\circ}, \dfrac{-1}{\sqrt{2}}\right)\)

    29.

    a \(\left(-240^{\circ}, \dfrac{-1}{2}\right)\)

    b \(\left(-210^{\circ}, \dfrac{-\sqrt{3}}{2}\right)\)

    c \(\left(-60^{\circ}, \dfrac{-1}{2}\right)\)

    d \(\left(30^{\circ}, \dfrac{\sqrt{3}}{2}\right)\)

    e \(\left(120^{\circ}, \dfrac{-1}{2}\right)\)

    f \(\left(270^{\circ}, 0\right)\)

    30.

    a

    \(\theta\) \(0^{\circ}\) \(90^{\circ}\) \(180^{\circ}\) \(270^{\circ}\) \(360^{\circ}\)
    \(f(\theta)\) 0 1 0 -1 0

    Screen Shot 2023-02-14 at 2.13.58 PM.png

    b

    \(\theta\) \(0^{\circ}\) \(90^{\circ}\) \(180^{\circ}\) \(270^{\circ}\) \(360^{\circ}\)
    \(f(\theta)\) 1 0 -1 0 1

    Screen Shot 2023-02-14 at 2.15.05 PM.png

    33. \(\dfrac{7}{2}\)

    35. \(-2\sqrt{2} - 1\)

    37. 2

    39. \(\dfrac{21}{2}\)

    41. Screen Shot 2023-02-14 at 2.15.59 PM.png

    43. Screen Shot 2023-02-14 at 2.16.04 PM.png

    45.

    a \(36.9^{\circ}, 143.1^{\circ}\)

    b Screen Shot 2023-02-14 at 2.16.16 PM.png

    47.

    a \(72.5^{\circ}, 287.5^{\circ}\)

    b Screen Shot 2023-02-14 at 2.18.31 PM.png

    49. \(36.9^{\circ}, 143.1^{\circ}\)

    51. \(72.5^{\circ}, 287.5^{\circ}\)

    53. \(191.5^{\circ}, 348.5^{\circ}\)

    55. \(154.2^{\circ}, 205.8^{\circ}\)

    57.

    a

    \(\theta\) \(81^{\circ}\) \(82^{\circ}\) \(83^{\circ}\) \(84^{\circ}\) \(85^{\circ}\) \(86^{\circ}\) \(87^{\circ}\) \(88^{\circ}\) \(89^{\circ}\)
    \(\tan \theta\) 6.314 7.115 8.114 9.514 11.43 14.301 19.081 28.636 57.29

    b \(\tan \theta\) approaches \(\infty\)

    c

    \(\theta\) \(99^{\circ}\) \(98^{\circ}\) \(97^{\circ}\) \(96^{\circ}\) \(95^{\circ}\) \(94^{\circ}\) \(93^{\circ}\) \(92^{\circ}\) \(91^{\circ}\)
    \(\tan \theta\) -6.314 -7.115 -8.144 -9.514 -11.43 -14.301 -19.081 -28.636 -57.29

    d \(\tan \theta\) approaches \(-\infty\)

    e The calculator gives an error message because \(\tan 90^{\circ}\) is undefined.

    59. Screen Shot 2023-02-14 at 2.25.01 PM.png

    61. \(51.34^{\circ}\)

    63. \(159.44^{\circ}\)

    65. \(y+5=\left(\tan 28^{\circ}\right)(x-3)\) or \(y+5=0.532(x-3)\)

    67. \(y-12=\left(\tan 112^{\circ}\right)(x+8)\) or \(y-12=-2.475(x+8)\)

    69.

    \(\alpha\) \(0^{\circ}\) \(15^{\circ}\) \(30^{\circ}\) \(45^{\circ}\) \(60^{\circ}\) \(75^{\circ}\) \(90^{\circ}\) \(105^{\circ}\) \(120^{\circ}\) \(135^{\circ}\) \(150^{\circ}\) \(165^{\circ}\) \(180^{\circ}\)
    \(m\) 0 0.268 0.577 1 1.732 3.732 -- -3.732 -1.732 -1 -0.577 -0.268 0

    Screen Shot 2023-02-14 at 2.29.01 PM.png

    a The slope increases toward \(\infty\).

    b The slope decreases toward \(-\infty\).

    4.3 Periodic Functions

    Homework 4.3

    1.

    a Screen Shot 2023-02-14 at 2.30.19 PM.png

    b

    \(t\) 0 2 4 6 8 10 12 14 16 18 20 22 24
    \(\theta\) \(90^{\circ}\) \(60^{\circ}\) \(30^{\circ}\) \(0^{\circ}\) \(330^{\circ}\) \(300^{\circ}\) \(270^{\circ}\) \(240^{\circ}\) \(210^{\circ}\) \(180^{\circ}\) \(150^{\circ}\) \(120^{\circ}\) \(90^{\circ}\)
    \(y = f(t)\) 6 \(3 \sqrt{3}\) 3 0 -3 \(-3\sqrt{3}\) -6 \(-3\sqrt{3}\) -3 0 3 \(3\sqrt{3}\) 6

    c Screen Shot 2023-02-14 at 2.33.32 PM.png

    d The graph from \(t=24\) to \(t=48\) will be exactly the same shape as the graph from \(t=0\) to \(t=24\). \(f(t+24) = f(t)\) says that the ant's \(y\)-coordinate 24 seconds after a time \(t\) is the same as its \(y\)-coordinate at time \(t\).

    3.

    a 2, 5, 5

    b 5

    c

    \(d\) 0 2 5 8 10 12 15 18 20 22 25 28 30 32 35 38 40
    \(y\) 0 2 5 5 5 5 5 2 0 -2 -5 -5 -5 -5 -5 -2 0

    d Screen Shot 2023-02-14 at 2.40.02 PM.png

    5.

    a He will be back in the same position.

    b \(f(d+40) = f(d)\)

    c The graph for \(0 \leq d \leq 40\) will be exactly the same shape as the graph for \(40 \leq d \leq 80\).

    d Every 40 unit wide piece of the graph will be identical to the previous 40 units.

    7. \(y = 6 \sin \theta\)

    9. \(y = \cos \theta - 5\)

    11. \(y = \sin (4\theta)\)

    13. Screen Shot 2023-02-14 at 2.42.10 PM.png

    15. Screen Shot 2023-02-14 at 2.42.15 PM.png

    17. Screen Shot 2023-02-14 at 2.42.21 PM.png

    19. amp = 4, period = \(360^{\circ}\), midline: \(y = 3\)

    21. amp = 5, period = \(180^{\circ}\), midline: \(y = 0\)

    23. amp = 3, period = \(120^{\circ}\), midline: \(y = -4\)

    25.

    a amp = 1, period = \(90^{\circ}\), midline: \(y = 0\)

    b \(y = \sin 4 \theta\)

    27.

    a amp = 1, period = \(360^{\circ}\), midline: \(y = 3\)

    b \(y = 3 + \cos \theta\)

    29.

    a amp = 4, period = \(360^{\circ}\), midline: \(y = -2\)

    b \(y = -2 + 4\sin \theta\)

    31.

    a amp = 2, period = \(120^{\circ}\), midline: \(y = 2\)

    b \(y = 2 + 2\cos 3 \theta\)

    33. \(y = 2 + 5 \cos \theta\)

    35. \(y = -4 \sin \theta\)

    37. \(y = -4 + 6\sin 3 \theta\) (Answers vary)

    39. \(y = 3 + 2 \cos \theta\) (Answers vary)

    41. \(y = 12 \cos 2 \theta\)

    43. \(A\left(0^{\circ},-3\right), B\left(135^{\circ}, \dfrac{3}{\sqrt{2}}\right), C\left(300^{\circ}, \dfrac{-3}{2}\right)\)

    45. \(P\left(112.5^{\circ}, 1\right), Q\left(180^{\circ}, 0\right), R\left(337.5^{\circ},-1\right)\)

    47. \(X\left(45^{\circ},-3+\dfrac{1}{\sqrt{2}}\right), Y\left(90^{\circ},-3\right) Z\left(300^{\circ},-2\right)\)

    49. not periodic

    51. Periodic with period 4

    53.

    a Screen Shot 2023-02-14 at 2.55.19 PM.png

    b 10 minutes

    55.

    a Screen Shot 2023-02-14 at 5.35.42 PM.png

    b 1 week

    57.

    a Screen Shot 2023-02-14 at 5.36.54 PM.png

    b period 1 sec, midline \(y = 12\), amp 10 inches

    59.

    a Screen Shot 2023-02-14 at 5.37.03 PM.png

    b period 1 year, midline \(y = 3500\), amp 2500

    61.

    a Screen Shot 2023-02-14 at 5.37.07 PM.png

    b period 1 year, midline \(y = 51\), amp 21

    63.

    a. IV

    b. III

    c. II

    d. I

    65.

    Screen Shot 2023-02-14 at 5.39.25 PM.png

    67.

    a Emotional high: Oct 5 and Nov 3, low: Oct 19; Physical high: Sep 30 and Oct 23, low: Oct 12 and Nov 4; Intellectual high: Oct 10, low: Oct 26

    b Emotional: 28 days, physical: 23 days, intellectual: 32 days

    c 5152 days

    69.

    a periodic, period 8

    b 4, midline: \(y = 3\)

    c \(k = 8\)

    d \(a = 3, b = 7\)

    71.

    a systolic 120 mm Hg, diastolic 80 mm Hg, pulse pressure 40 mm Hg.

    b \(99 \dfrac{1}{3}\)

    c 72 beats per minute

    73.

    a 69 hours.

    b 2.2 to 3.5

    c The larger dip corresponds to when the brighter star is eclipsed, the smaller dip corresponds to when the dimmer star is eclipsed.

    4.4 Chapter 4 Summary and Review

    Chapter 4 Review Problems

    1. \(12^{\circ}\)

    3.

    a \(150^{\circ}, -210^{\circ}\)

    b \(240^{\circ},-120^{\circ}\)

    c \(160^{\circ},-560^{\circ}\)

    d \(20^{\circ},-340^{\circ}\)

    5.

    a \(I, 60^{\circ} ; 120^{\circ}, 240^{\circ}, 300^{\circ}\)

    b \(I V, 25^{\circ} ; 155^{\circ}, 205^{\circ}, 335^{\circ}\)

    c \(I I, 80^{\circ} ; 80^{\circ}, 260^{\circ}, 280^{\circ}\)

    d \(I I I, 70^{\circ} ; 70^{\circ}, 110^{\circ}, 290^{\circ}\)

    7.

    a

    \(\theta\) \(30^{\circ}\) \(60^{\circ}\) \(90^{\circ}\) \(120^{\circ}\) \(150^{\circ}\) \(180^{\circ}\) \(210^{\circ}\) \(240^{\circ}\) \(270^{\circ}\) \(300^{\circ}\) \(330^{\circ}\) \(360^{\circ}\)
    \(f(\theta)\) 30 60 90 60 30 0 30 60 90 60 30 0

    b Screen Shot 2023-02-14 at 5.47.16 PM.png

    9. \(210^{\circ}, 330^{\circ}\)

    11. \(120^{\circ}, 240^{\circ}\)

    13. \(45^{\circ}, 225^{\circ}\)

    15. \(23^{\circ}, 337^{\circ}\)

    17. \(72^{\circ}, 252^{\circ}\)

    19. \(163^{\circ}, 277^{\circ}\)

    21. \(221.81^{\circ}, 318.19^{\circ}\)

    23. \(123.69^{\circ}, 303.69^{\circ}\)

    25. \(128.68^{\circ}, 231.32^{\circ}\)

    27. (−9.74, −2.25)

    29. (−0.28, 8.00)

    31. (2.84, 0.98)

    33. south: 1.74 mi, west: 9.85 mi

    35. \(y=4+7 \sin (180 \theta)\)

    Screen Shot 2023-02-14 at 5.50.39 PM.png

    37. \(y=17+7 \sin \theta\)

    Screen Shot 2023-02-14 at 5.50.44 PM.png

    39. \(\dfrac{\sqrt{3}}{2}\)

    41. 0

    43. \(y=1.5 \cos \left(\dfrac{\theta}{3}\right), M\left(-90^{\circ}, \dfrac{3 \sqrt{3}}{4}\right), N\left(180^{\circ}, \dfrac{3}{4}\right)\)

    45. \(y=3+3 \sin 2 \theta, A\left(-45^{\circ}, 6\right), B\left(120^{\circ}, 3-\dfrac{3 \sqrt{3}}{2}\right)\)

    47.

    a Screen Shot 2023-02-14 at 5.50.54 PM.png

    b 24 hours

    49.

    a Screen Shot 2023-02-14 at 5.50.59 PM.png

    b 20 sec

    51.

    a Screen Shot 2023-02-14 at 5.54.52 PM.png

    b amp: 2, period: \(360^{\circ}\), midline: \(y = 4\)

    53.

    a Screen Shot 2023-02-14 at 5.55.00 PM.png

    b amp: 3.5, period: \(180^{\circ}\), midline: \(y = 1.5\)

    55. \(30^{\circ}\)

    57. \(92.05^{\circ}\)

    59. \(y = x + 2\)

    61. \(y = - \sqrt{3}x + 3 \sqrt{3} - 4\)

    63.

    Screen Shot 2023-02-14 at 5.58.21 PM.png

    The \(\theta\)-intercepts of \(\cos \theta\) occur at the vertical asymptotes of \(\tan \theta\).


    This page titled 11.3: Trigonometric Functions is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by Katherine Yoshiwara via source content that was edited to the style and standards of the LibreTexts platform.

    • Was this article helpful?