11.3: Trigonometric Functions
( \newcommand{\kernel}{\mathrm{null}\,}\)
4.1 Angles and Rotation
Homework 4.1
1.
a 216∘
b 108∘
c 480∘
d 960∘
3.
a 18
b 56
c 32
d 76
5.
a 23
b 53
7. 60∘
9. 60∘
11. 14∘
13. 400∘ and −320∘ (Answers vary.)
15. 575∘ and −145∘ (Answers vary.)
17. 665∘ and −55∘ (Answers vary.)
19. 295∘
21. 70∘
23. 315∘
25. 80∘
27. 36∘
29. 63∘
31. 165∘,95∘,345∘
33. 140∘,220∘,320∘
35. 112∘,248∘,292∘
37. −0.9205
39. −0.7193
41. 4.705
43. −0.7193
45.
a 120∘
b 135∘
c 150∘
d 210∘
e 225∘
f 240∘
g 300∘
h 315∘
i 330∘
47.
a
b
bsin120∘=√32,cos120∘=−12,tan120∘=−√3,sin240∘=−√32,cos240∘=−12,tan240∘=√3,sin300∘=−√32,cos300∘=12,tan300∘=−√3
49.
a
b
b sin135∘=1√2,cos135∘=−1√2,tan135∘=−1,sin225∘=−1√2,cos225∘=−1√2,tan225∘=1,sin315∘=−1√2,cos315∘=1√2,tan315∘=−1
51.
a III and IV
b II and III
c I and III
53.
a 0∘ and 180∘
b 90∘ and 270∘
55. 105∘
57. 264∘
59. 313∘
61. 83∘,263∘
63. 23∘,337∘
65. 265∘,275∘
67. 156∘,204∘
69. 246∘,294∘
71. 149∘,329∘
73. (−2√2,2√2)
75. (32,3√32)
77. (−√32,−12)
79.
a (−0.9, −0.3)
b (−0.940, −0.342)
c (−1.9, −0.7)
81.
a (−0.9, 0.3)
b (−0.940, 0.342)
c (−1.9, 0.7)
83. Sides of similar triangles are proportional.
4.2 Graphs of Trigonometric Functions
Homework 4.2
1. (4√2,−4√2)
3. (−10,−10√3)
5. (−15√32,152)
7. (−1.25,−5.87)
9. (5.70,−11.86)
11. (9.46,−3.26)
13.
a
b 15.3 mi east, 21 mi north
15.
a
b 91.9 km west, 77.1 km south
17.
a
b 30.9 km west, 8.3 km north
19.
Angle | 0∘ | 10∘ | 20∘ | 30∘ | 40∘ | 50∘ | 60∘ | 70∘ | 80∘ | 90∘ |
x-coordinate | 1 | 0.98 | 0.94 | 0.97 | 0.77 | 0.64 | 0.5 | 0.34 | 0.17 | 0 |
Angle | 100∘ | 110∘ | 120∘ | 130∘ | 140∘ | 150∘ | 160∘ | 170∘ | 180∘ |
x-coordinate | -0.17 | -0.34 | -0.5 | -0.64 | -0.77 | -0.87 | -0.94 | -0.98 | -1 |
Angle | 190∘ | 200∘ | 210∘ | 220∘ | 230∘ | 240∘ | 250∘ | 260∘ | 270∘ |
x-coordinate | -0.98 | -0.94 | -0.87 | -0.77 | -0.64 | -0.5 | -0.34 | -0.17 | 0 |
Angle | 280∘ | 290∘ | 300∘ | 310∘ | 320∘ | 330∘ | 340∘ | 350∘ | 360∘ |
x-coordinate | 0.17 | 0.34 | 0.5 | 0.64 | 0.77 | 0.87 | 0.94 | 0.98 | 1 |
21.
23.
25.
27.
a (−225∘,1√2)
b (−135∘,−1√2)
c (−90∘,−1)
d (45∘,1√2)
e (180∘,0)
f (315∘,−1√2)
29.
a (−240∘,−12)
b (−210∘,−√32)
c (−60∘,−12)
d (30∘,√32)
e (120∘,−12)
f (270∘,0)
30.
a
θ | 0∘ | 90∘ | 180∘ | 270∘ | 360∘ |
f(θ) | 0 | 1 | 0 | -1 | 0 |
b
θ | 0∘ | 90∘ | 180∘ | 270∘ | 360∘ |
f(θ) | 1 | 0 | -1 | 0 | 1 |
33. 72
35. −2√2−1
37. 2
39. 212
41.
43.
45.
a 36.9∘,143.1∘
b
47.
a 72.5∘,287.5∘
b
49. 36.9∘,143.1∘
51. 72.5∘,287.5∘
53. 191.5∘,348.5∘
55. 154.2∘,205.8∘
57.
a
θ | 81∘ | 82∘ | 83∘ | 84∘ | 85∘ | 86∘ | 87∘ | 88∘ | 89∘ |
tanθ | 6.314 | 7.115 | 8.114 | 9.514 | 11.43 | 14.301 | 19.081 | 28.636 | 57.29 |
b tanθ approaches ∞
c
θ | 99∘ | 98∘ | 97∘ | 96∘ | 95∘ | 94∘ | 93∘ | 92∘ | 91∘ |
tanθ | -6.314 | -7.115 | -8.144 | -9.514 | -11.43 | -14.301 | -19.081 | -28.636 | -57.29 |
d tanθ approaches −∞
e The calculator gives an error message because tan90∘ is undefined.
59.
61. 51.34∘
63. 159.44∘
65. y+5=(tan28∘)(x−3) or y+5=0.532(x−3)
67. y−12=(tan112∘)(x+8) or y−12=−2.475(x+8)
69.
α | 0∘ | 15∘ | 30∘ | 45∘ | 60∘ | 75∘ | 90∘ | 105∘ | 120∘ | 135∘ | 150∘ | 165∘ | 180∘ |
m | 0 | 0.268 | 0.577 | 1 | 1.732 | 3.732 | -- | -3.732 | -1.732 | -1 | -0.577 | -0.268 | 0 |
a The slope increases toward ∞.
b The slope decreases toward −∞.
4.3 Periodic Functions
Homework 4.3
1.
a
b
t | 0 | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | 22 | 24 |
θ | 90∘ | 60∘ | 30∘ | 0∘ | 330∘ | 300∘ | 270∘ | 240∘ | 210∘ | 180∘ | 150∘ | 120∘ | 90∘ |
y=f(t) | 6 | 3√3 | 3 | 0 | -3 | −3√3 | -6 | −3√3 | -3 | 0 | 3 | 3√3 | 6 |
c
d The graph from t=24 to t=48 will be exactly the same shape as the graph from t=0 to t=24. f(t+24)=f(t) says that the ant's y-coordinate 24 seconds after a time t is the same as its y-coordinate at time t.
3.
a 2, 5, 5
b 5
c
d | 0 | 2 | 5 | 8 | 10 | 12 | 15 | 18 | 20 | 22 | 25 | 28 | 30 | 32 | 35 | 38 | 40 |
y | 0 | 2 | 5 | 5 | 5 | 5 | 5 | 2 | 0 | -2 | -5 | -5 | -5 | -5 | -5 | -2 | 0 |
d
5.
a He will be back in the same position.
b f(d+40)=f(d)
c The graph for 0≤d≤40 will be exactly the same shape as the graph for 40≤d≤80.
d Every 40 unit wide piece of the graph will be identical to the previous 40 units.
7. y=6sinθ
9. y=cosθ−5
11. y=sin(4θ)
13.
15.
17.
19. amp = 4, period = 360∘, midline: y=3
21. amp = 5, period = 180∘, midline: y=0
23. amp = 3, period = 120∘, midline: y=−4
25.
a amp = 1, period = 90∘, midline: y=0
b y=sin4θ
27.
a amp = 1, period = 360∘, midline: y=3
b y=3+cosθ
29.
a amp = 4, period = 360∘, midline: y=−2
b y=−2+4sinθ
31.
a amp = 2, period = 120∘, midline: y=2
b y=2+2cos3θ
33. y=2+5cosθ
35. y=−4sinθ
37. y=−4+6sin3θ (Answers vary)
39. y=3+2cosθ (Answers vary)
41. y=12cos2θ
43. A(0∘,−3),B(135∘,3√2),C(300∘,−32)
45. P(112.5∘,1),Q(180∘,0),R(337.5∘,−1)
47. X(45∘,−3+1√2),Y(90∘,−3)Z(300∘,−2)
49. not periodic
51. Periodic with period 4
53.
a
b 10 minutes
55.
a
b 1 week
57.
a
b period 1 sec, midline y=12, amp 10 inches
59.
a
b period 1 year, midline y=3500, amp 2500
61.
a
b period 1 year, midline y=51, amp 21
63.
a. IV
b. III
c. II
d. I
65.
67.
a Emotional high: Oct 5 and Nov 3, low: Oct 19; Physical high: Sep 30 and Oct 23, low: Oct 12 and Nov 4; Intellectual high: Oct 10, low: Oct 26
b Emotional: 28 days, physical: 23 days, intellectual: 32 days
c 5152 days
69.
a periodic, period 8
b 4, midline: y=3
c k=8
d a=3,b=7
71.
a systolic 120 mm Hg, diastolic 80 mm Hg, pulse pressure 40 mm Hg.
b 9913
c 72 beats per minute
73.
a 69 hours.
b 2.2 to 3.5
c The larger dip corresponds to when the brighter star is eclipsed, the smaller dip corresponds to when the dimmer star is eclipsed.
4.4 Chapter 4 Summary and Review
Chapter 4 Review Problems
1. 12∘
3.
a 150∘,−210∘
b 240∘,−120∘
c 160∘,−560∘
d 20∘,−340∘
5.
a I,60∘;120∘,240∘,300∘
b IV,25∘;155∘,205∘,335∘
c II,80∘;80∘,260∘,280∘
d III,70∘;70∘,110∘,290∘
7.
a
θ | 30∘ | 60∘ | 90∘ | 120∘ | 150∘ | 180∘ | 210∘ | 240∘ | 270∘ | 300∘ | 330∘ | 360∘ |
f(θ) | 30 | 60 | 90 | 60 | 30 | 0 | 30 | 60 | 90 | 60 | 30 | 0 |
b
9. 210∘,330∘
11. 120∘,240∘
13. 45∘,225∘
15. 23∘,337∘
17. 72∘,252∘
19. 163∘,277∘
21. 221.81∘,318.19∘
23. 123.69∘,303.69∘
25. 128.68∘,231.32∘
27. (−9.74, −2.25)
29. (−0.28, 8.00)
31. (2.84, 0.98)
33. south: 1.74 mi, west: 9.85 mi
35. y=4+7sin(180θ)
37. y=17+7sinθ
39. √32
41. 0
43. y=1.5cos(θ3),M(−90∘,3√34),N(180∘,34)
45. y=3+3sin2θ,A(−45∘,6),B(120∘,3−3√32)
47.
a
b 24 hours
49.
a
b 20 sec
51.
a
b amp: 2, period: 360∘, midline: y=4
53.
a
b amp: 3.5, period: 180∘, midline: y=1.5
55. 30∘
57. 92.05∘
59. y=x+2
61. y=−√3x+3√3−4
63.
The θ-intercepts of cosθ occur at the vertical asymptotes of tanθ.