Loading [MathJax]/jax/output/HTML-CSS/jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

11.4: Equations and Identities

( \newcommand{\kernel}{\mathrm{null}\,}\)

5.1 Algebra with Trigonometric Ratios

Homework 5.1

1. -2

3. 12

5. 6

7. 12

9. 4

11. 2

13. 1

15. 0

17.

a 0.7660

b 0.8164

c 0.7660

19.

a 0.6691

b 1.8271

c 0.6691

21.

a 1

b 1

c 1

23.

a 2x2x

b 2cos2θcosθ

25.

a 4SC

b 4sinθcosθ

27.

a 5C2S3

b 5cos2θsin3θ

29. 2cost+2costsint;0.6360

31. tanθtanϕ;56.91

33. 2sinxcosx2sin(2x);0

35. No

37. No

39. Yes

41. No

43. No

45.

a 2x2x

b 2sin2AsinA

47.

a ab3a2

b tanAtanB3tan2A

49.

a 2C2+C1

b 2cos2ϕ+cosϕ1

51.

a a2b2

b cos2θcos2ϕ

53.

a 12T+T2

b 12tanθ+tan2θ

55.

a T44

b tan4θ4

57.

a 3(3m+5n)

b 3(3cosα+5cosβ)

59.

a 5r(r2q)

b 5tanC(tanC2tanB)

61.

a (3C+1)(3C1)

b (3cosβ+1)(3cosβ1)

63.

a 2T2(3T4)

b 2tan2A(3tanA4)

65.

a (t5)(t+4)

b (tanθ5)(tanθ+4)

67.

a (3c1)(c+1)

b (3cosB1)(cosB+1)

5.2 Solving Equations

Homework 5.2

1. 70

3. 40

5. I: 18; II: 162; III: 198;IV:342

7. I: 52; II: 128; III: 232;IV:308

9.

a 0, 4, 2, 0, 4

b -1 or 2

11.

a 1,3+12,2,3+12

b 45

13.

a 0,222,132,1

b 270

15. x=5,3

17. x=3,1,2

19. θ=30 or θ=210

21. θ=60 or θ=300

23. θ=210 or θ=330

25. θ=225 or θ=315

27. θ=0 or θ=180

29. θ=60,θ=120,θ=240, or θ=300

31. θ=45,θ=135,θ=225, or θ=315

33. θ=104.04 or θ=284.04

35. θ=53.13 or θ=306.87

37. θ=188.21 or θ=351.79

39. A=135 or A=315

41. ϕ=210 or ϕ=330

43. B=90 or B=270

45. θ=210 or θ=330

47. B=90 or B=270

49. θ=210 or θ=330

51. ϕ=146 or ϕ=214

53. θ=54.74,θ=125.26,θ=234.74, or θ=305.26

55. θ=0,θ=180,θ=191.54, or θ=348.46

57. θ=60,θ=180, or θ=300

59. θ=26.57,θ=161.57,θ=206.57, or θ=341.57

61. θ=78.69,θ=108.43,θ=258.69, or θ=288.43

63. θ=0

65. 17.22

67. 35.66

5.3 Trigonometric Identities

Homework 5.3

1. not an identity

3. not an identity

5. identity

7. not an identity

9. not an identity

11. not an identity

13. identity

15. identity

17. (1+sinw)(1sinw)=1sin2w=cos2w

19.

(cosθsinθ)2=cos2θ2cosθsinθ+sin2θ=(cos2θ+sin2θ)2sinθcosθ=12sinθcosθ

21. tanθcosθ=sinθcosθcosθ=sinθ

23.

cos4xsin4x=(cos2xsin2x)(cos2x+sin2x)=(cos2xsin2x)(1)=cos2xsin2x

25. sinu1+cosu1cosu1cosu=sinu(1cosu)1cos2u=sinu(1cosu)sin2u=1cosusinu

27. 1

29. 1

31. sin2A

33. tan2z

35. 3

37. 1

39. 6

41. cos2θ

43. cosθ

45. sin2t

47. 1+2sinθ+sin2θ

49. 3cos2ϕ2

51. θ=90,θ=180,θ=270

53. θ=90,θ=210,θ=330

55. θ=210,θ=330

57. θ=18.43,θ=198.43

59. sinA=513,tanA=512

61. cosϕ=437,tanϕ=143

63. sinθ=15,cosθ=25

65. sinθ=35,cosθ=45

67. sinθ=32,cosθ=12,tanθ=3

69. sinβ=25,cosβ=15,tanβ=2

71.

sinC=15,cosC=25,tanC=12 or sinC=15,cosC=25,tanC=12

73. tanα1+tanα=sinαcosα1+sinαcosαcosαcosα=sinαsinα+cosα

75. 1+tan2β1tan2β=1cos2β1sin2βcos2βcos2βcos2β=1cos2βsin2β

77. Screen Shot 2023-02-14 at 11.29.42 PM.png

a By the distance formula, x2+y2=r, or x2+y2=r2.

b x2r2+y2r2=1

c (xr)2+(yr)2=1

d (cosθ)2+(sinθ)2=1

5.4 Chapter 5 Summary and Review

Chapter 5 Review Problems

1. 342

3. 16

5.

a 0.8660

b 0.9848; No

7.

a 1.4821

b 1.4821; Yes

9. 5sinx2sinxcosycosy

11. 2tanθ10tan2θ

13. Not equivalent

15. Equivalent

17. 2cos2α+cosα6

19. tan2ϕ2tanϕcosϕ+cos2ϕ

21. 6(2sin3xsin2x)

23. (1+3tanθ)(13tanθ)

25. cosα+sinα

27. 32

29. 3tanC+2tanC2

31. 51.32,308.68

33. 90,270,120,240

35. 90,210,330

37. 30,150,210,330

39. 0,120,240

41. 57.99,237.99

43. 90,270

45. 33.17

47. Identity

49. Not an identity

51. Not an identity

53. Identity

55. 1cos2αtanα=sin2αcosαsinα=sinαcosα

57.

sinθcosθsinθcosθsinθsinθcosθ=sinθsinθcos2θsin2θ=sinθ(1cos2θ)sin2θ=sinθsin2θsin2θ=sinθ

59. 1sinθcosθ

61. 1

63. 0

65. 1

67. 1cos2β

69. 2+cost2cos2t

71. sinβ=685,cosβ=785,tanβ=67

73. sinα=215,cosα=25,tanα=212

75. 0,180,270

77. 135,315

79. 0,60,180,300

81. 0,180


This page titled 11.4: Equations and Identities is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by Katherine Yoshiwara via source content that was edited to the style and standards of the LibreTexts platform.

Support Center

How can we help?