11.4: Equations and Identities
- Page ID
- 122926
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)5.1 Algebra with Trigonometric Ratios
Homework 5.1
1. -2
3. \(\dfrac{1}{\sqrt{2}}\)
5. 6
7. \(\dfrac{1}{2}\)
9. 4
11. 2
13. 1
15. 0
17.
a 0.7660
b 0.8164
c 0.7660
19.
a 0.6691
b 1.8271
c 0.6691
21.
a 1
b 1
c 1
23.
a \(-2 x^2-x\)
b \(-2 \cos ^2 \theta-\cos \theta\)
25.
a \(4 S C\)
b \(4 \sin \theta \cos \theta\)
27.
a \(5 C^2 S^3\)
b \(5 \cos ^2 \theta \sin ^3 \theta\)
29. \(-2 \cos t+2 \cos t \sin t ; 0.6360\)
31. \(\tan \theta-\tan \phi ;-56.91\)
33. \(2 \sin x \cos x-2 \sin (2 x) ; 0\)
35. No
37. No
39. Yes
41. No
43. No
45.
a \(2 x^2-x\)
b \(2 \sin ^2 A-\sin A\)
47.
a \(a b-3 a^2\)
b \(\tan A \tan B-3 \tan ^2 A\)
49.
a \(2 C^2+C-1\)
b \(2 \cos ^2 \phi+\cos \phi-1\)
51.
a \(a^2-b^2\)
b \(\cos ^2 \theta-\cos ^2 \phi\)
53.
a \(1-2 T+T^2\)
b \(1-2 \tan \theta+\tan ^2 \theta\)
55.
a \(T^4-4\)
b \(\tan ^4 \theta-4\)
57.
a \(3(3 m+5 n)\)
b \(3(3 \cos \alpha+5 \cos \beta)\)
59.
a \(5 r(r-2 q)\)
b \(5 \tan C(\tan C-2 \tan B)\)
61.
a \((3 C+1)(3 C-1)\)
b \((3 \cos \beta+1)(3 \cos \beta-1)\)
63.
a \(2 T^2(3 T-4)\)
b \(2 \tan ^2 A(3 \tan A-4)\)
65.
a \((t-5)(t+4)\)
b \((\tan \theta-5)(\tan \theta+4)\)
67.
a \((3 c-1)(c+1)\)
b \((3 \cos B-1)(\cos B+1)\)
5.2 Solving Equations
Homework 5.2
1. \(70^{\circ}\)
3. \(40^{\circ}\)
5. I: \(18^{\circ}\); II: \(162^{\circ}\); III: \(198^{\circ} ; \mathrm{IV}: 342^{\circ}\)
7. I: \(52^{\circ}\); II: \(128^{\circ}\); III: \(232^{\circ} ; \mathrm{IV}: 308^{\circ}\)
9.
a 0, 4, 2, 0, 4
b -1 or 2
11.
a \(1, \dfrac{\sqrt{3}+1}{2}, \sqrt{2}, \dfrac{\sqrt{3}+1}{2}\)
b \(45^{\circ}\)
13.
a \(0, \dfrac{2-\sqrt{2}}{2}, \dfrac{1-\sqrt{3}}{2},-1\)
b \(270^{\circ}\)
15. \(x = 5, -3\)
17. \(x = -3, 1, 2\)
19. \(\theta = 30^{\circ}\) or \(\theta = 210^{\circ}\)
21. \(\theta=60^{\circ}\) or \(\theta=300^{\circ}\)
23. \(\theta=210^{\circ}\) or \(\theta=330^{\circ}\)
25. \(\theta=225^{\circ}\) or \(\theta=315^{\circ}\)
27. \(\theta=0^{\circ}\) or \(\theta=180^{\circ}\)
29. \(\theta=60^{\circ}, \theta=120^{\circ}, \theta=240^{\circ}\), or \(\theta=300^{\circ}\)
31. \(\theta=45^{\circ}, \theta=135^{\circ}, \theta=225^{\circ}\), or \(\theta=315^{\circ}\)
33. \(\theta=104.04^{\circ}\) or \(\theta=284.04^{\circ}\)
35. \(\theta=53.13^{\circ}\) or \(\theta=306.87^{\circ}\)
37. \(\theta=188.21^{\circ}\) or \(\theta=351.79^{\circ}\)
39. \(A=135^{\circ}\) or \(A=315^{\circ}\)
41. \(\phi=210^{\circ}\) or \(\phi=330^{\circ}\)
43. \(B=90^{\circ}\) or \(B=270^{\circ}\)
45. \(\theta=210^{\circ}\) or \(\theta=330^{\circ}\)
47. \(B=90^{\circ}\) or \(B=270^{\circ}\)
49. \(\theta=210^{\circ}\) or \(\theta=330^{\circ}\)
51. \(\phi=146^{\circ}\) or \(\phi=214^{\circ}\)
53. \(\theta=54.74^{\circ}, \theta=125.26^{\circ}, \theta=234.74^{\circ}\), or \(\theta=305.26^{\circ}\)
55. \(\theta=0^{\circ}, \theta=180^{\circ}, \theta=191.54^{\circ}\), or \(\theta=348.46^{\circ}\)
57. \(\theta=60^{\circ}, \theta=180^{\circ}\), or \(\theta=300^{\circ}\)
59. \(\theta=26.57^{\circ}, \theta=161.57^{\circ}, \theta=206.57^{\circ}\), or \(\theta=341.57^{\circ}\)
61. \(\theta=78.69^{\circ}, \theta=108.43^{\circ}, \theta=258.69^{\circ}\), or \(\theta=288.43^{\circ}\)
63. \(\theta=0^{\circ}\)
65. \(17.22^{\circ}\)
67. \(35.66^{\circ}\)
5.3 Trigonometric Identities
Homework 5.3
1. not an identity
3. not an identity
5. identity
7. not an identity
9. not an identity
11. not an identity
13. identity
15. identity
17. \((1+\sin w)(1-\sin w)=1-\sin ^2 w=\cos ^2 w\)
19.
\begin{aligned}
(\cos \theta-\sin \theta)^2 & =\cos ^2 \theta-2 \cos \theta \sin \theta+\sin ^2 \theta \\ & =\left(\cos ^2 \theta+\sin ^2 \theta\right)-2 \sin \theta \cos \theta=1-2 \sin \theta \cos \theta
\end{aligned}
21. \(\tan \theta \cos \theta=\dfrac{\sin \theta}{\cos \theta} \cdot \cos \theta=\sin \theta\)
23.
\begin{aligned}
\cos ^4 x-\sin ^4 x&=\left(\cos ^2 x-\sin ^2 x\right)\left(\cos ^2 x+\sin ^2 x\right) \\
&=\left(\cos ^2 x-\sin ^2 x\right)(1)=\cos ^2 x-\sin ^2 x
\end{aligned}
25. \(\dfrac{\sin u}{1+\cos u} \cdot \dfrac{1-\cos u}{1-\cos u}=\dfrac{\sin u(1-\cos u)}{1-\cos ^2 u}= \dfrac{\sin u(1-\cos u)}{\sin ^2 u}=\dfrac{1-\cos u}{\sin u}\)
27. 1
29. 1
31. \(\sin ^2 A\)
33. \(\tan ^2 z\)
35. 3
37. 1
39. 6
41. \(\cos 2 \theta\)
43. \(\cos \theta\)
45. \(\sin 2 t\)
47. \(1 + 2 \sin \theta + \sin ^2 \theta\)
49. \(3 \cos ^2 \phi - 2\)
51. \(\theta=90^{\circ}, \theta=180^{\circ}, \theta=270^{\circ}\)
53. \(\theta=90^{\circ}, \theta=210^{\circ}, \theta=330^{\circ}\)
55. \(\theta=210^{\circ}, \theta=330^{\circ}\)
57. \(\theta=18.43^{\circ}, \theta=198.43^{\circ}\)
59. \(\sin A=\dfrac{-5}{13}, \tan A=\dfrac{-5}{12}\)
61. \(\cos \phi=\dfrac{-4 \sqrt{3}}{7}, \tan \phi=\dfrac{-1}{4 \sqrt{3}}\)
63. \(\sin \theta=\dfrac{-1}{\sqrt{5}}, \quad \cos \theta=\dfrac{2}{\sqrt{5}}\)
65. \(\sin \theta=\dfrac{-3}{5}, \quad \cos \theta=\dfrac{-4}{5}\)
67. \(\sin \theta=\dfrac{\sqrt{3}}{2}, \quad \cos \theta=\dfrac{-1}{2}, \quad \tan \theta=\sqrt{3}\)
69. \(\sin \beta=\dfrac{2}{\sqrt{5}}, \quad \cos \beta=\dfrac{-1}{\sqrt{5}}, \quad \tan \beta=-2\)
71.
\begin{aligned}
\sin C & =\dfrac{1}{\sqrt{5}}, \quad \cos C=\dfrac{2}{\sqrt{5}}, \quad \tan C=\dfrac{1}{2} \\
\text { or } \quad \sin C & =\dfrac{1}{\sqrt{5}}, \quad \cos C=\dfrac{-2}{\sqrt{5}}, \quad \tan C=\dfrac{-1}{2}
\end{aligned}
73. \(\dfrac{\tan \alpha}{1+\tan \alpha}=\dfrac{\frac{\sin \alpha}{\cos \alpha}}{1+\frac{\sin \alpha}{\cos \alpha}} \cdot \dfrac{\cos \alpha}{\cos \alpha}=\dfrac{\sin \alpha}{\sin \alpha+\cos \alpha}\)
75. \(\dfrac{1+\tan ^2 \beta}{1-\tan ^2 \beta}=\dfrac{\frac{1}{\cos ^2 \beta}}{1-\frac{\sin ^2 \beta}{\cos ^2 \beta}} \cdot \dfrac{\cos ^2 \beta}{\cos ^2 \beta}= \dfrac{1}{\cos ^2 \beta-\sin ^2 \beta}\)
77.
a By the distance formula, \(\sqrt{x^2+y^2}=r\), or \(x^2+y^2=r^2\).
b \(\dfrac{x^2}{r^2}+\dfrac{y^2}{r^2}=1\)
c \(\left(\dfrac{x}{r}\right)^2+\left(\dfrac{y}{r}\right)^2=1\)
d \((\cos \theta)^2+(\sin \theta)^2=1\)
5.4 Chapter 5 Summary and Review
Chapter 5 Review Problems
1. \(\dfrac{-3}{4 \sqrt{2}}\)
3. \(\dfrac{1}{\sqrt{6}}\)
5.
a 0.8660
b 0.9848; No
7.
a 1.4821
b 1.4821; Yes
9. \(5 \sin x-2 \sin x \cos y-\cos y\)
11. \(2 \tan \theta-10 \tan ^2 \theta\)
13. Not equivalent
15. Equivalent
17. \(2 \cos ^2 \alpha+\cos \alpha-6\)
19. \(\tan ^2 \phi-2 \tan \phi \cos \phi+\cos ^2 \phi\)
21. \(6(2 \sin 3 x-\sin 2 x)\)
23. \((1+3 \tan \theta)(1-3 \tan \theta)\)
25. \(\cos \alpha+\sin \alpha\)
27. \(\dfrac{3}{2}\)
29. \(\dfrac{3 \tan C+2}{\tan C-2}\)
31. \(51.32^{\circ}, 308.68^{\circ}\)
33. \(90^{\circ}, 270^{\circ}, 120^{\circ}, 240^{\circ}\)
35. \(90^{\circ}, 210^{\circ}, 330^{\circ}\)
37. \(30^{\circ}, 150^{\circ}, 210^{\circ}, 330^{\circ}\)
39. \(0^{\circ}, 120^{\circ}, 240^{\circ}\)
41. \(57.99^{\circ}, 237.99^{\circ}\)
43. \(90^{\circ}, 270^{\circ}\)
45. \(33.17^{\circ}\)
47. Identity
49. Not an identity
51. Not an identity
53. Identity
55. \(\dfrac{1-\cos ^2 \alpha}{\tan \alpha}=\sin ^2 \alpha \cdot \dfrac{\cos \alpha}{\sin \alpha}=\sin \alpha \cos \alpha\)
57.
\begin{aligned}
\dfrac{\frac{\sin \theta}{\cos \theta}-\sin \theta \cos \theta}{\sin \theta \cdot \frac{\sin \theta}{\cos \theta}}&=\dfrac{\sin \theta-\sin \theta \cos ^2 \theta}{\sin ^2 \theta} \\
& =\dfrac{\sin \theta\left(1-\cos ^2 \theta\right)}{\sin ^2 \theta}=\dfrac{\sin \theta \sin ^2 \theta}{\sin ^2 \theta}=\sin \theta
\end{aligned}
59. \(\dfrac{1}{\sin \theta \cos \theta}\)
61. 1
63. 0
65. 1
67. \(\dfrac{1}{\cos ^2 \beta}\)
69. \(2+\cos t-2 \cos ^2 t\)
71. \(\sin \beta=\dfrac{-6}{\sqrt{85}}, \quad \cos \beta=\dfrac{-7}{\sqrt{85}}, \quad \tan \beta=\dfrac{6}{7}\)
73. \(\sin \alpha=\dfrac{\sqrt{21}}{5}, \cos \alpha=\dfrac{-2}{5}, \quad \tan \alpha=\dfrac{-\sqrt{21}}{2}\)
75. \(0^{\circ}, 180^{\circ}, 270^{\circ}\)
77. \(135^{\circ}, 315^{\circ}\)
79. \(0^{\circ}, 60^{\circ}, 180^{\circ}, 300^{\circ}\)
81. \(0^{\circ}, 180^{\circ}\)