11.4: Equations and Identities
( \newcommand{\kernel}{\mathrm{null}\,}\)
5.1 Algebra with Trigonometric Ratios
Homework 5.1
1. -2
3. 1√2
5. 6
7. 12
9. 4
11. 2
13. 1
15. 0
17.
a 0.7660
b 0.8164
c 0.7660
19.
a 0.6691
b 1.8271
c 0.6691
21.
a 1
b 1
c 1
23.
a −2x2−x
b −2cos2θ−cosθ
25.
a 4SC
b 4sinθcosθ
27.
a 5C2S3
b 5cos2θsin3θ
29. −2cost+2costsint;0.6360
31. tanθ−tanϕ;−56.91
33. 2sinxcosx−2sin(2x);0
35. No
37. No
39. Yes
41. No
43. No
45.
a 2x2−x
b 2sin2A−sinA
47.
a ab−3a2
b tanAtanB−3tan2A
49.
a 2C2+C−1
b 2cos2ϕ+cosϕ−1
51.
a a2−b2
b cos2θ−cos2ϕ
53.
a 1−2T+T2
b 1−2tanθ+tan2θ
55.
a T4−4
b tan4θ−4
57.
a 3(3m+5n)
b 3(3cosα+5cosβ)
59.
a 5r(r−2q)
b 5tanC(tanC−2tanB)
61.
a (3C+1)(3C−1)
b (3cosβ+1)(3cosβ−1)
63.
a 2T2(3T−4)
b 2tan2A(3tanA−4)
65.
a (t−5)(t+4)
b (tanθ−5)(tanθ+4)
67.
a (3c−1)(c+1)
b (3cosB−1)(cosB+1)
5.2 Solving Equations
Homework 5.2
1. 70∘
3. 40∘
5. I: 18∘; II: 162∘; III: 198∘;IV:342∘
7. I: 52∘; II: 128∘; III: 232∘;IV:308∘
9.
a 0, 4, 2, 0, 4
b -1 or 2
11.
a 1,√3+12,√2,√3+12
b 45∘
13.
a 0,2−√22,1−√32,−1
b 270∘
15. x=5,−3
17. x=−3,1,2
19. θ=30∘ or θ=210∘
21. θ=60∘ or θ=300∘
23. θ=210∘ or θ=330∘
25. θ=225∘ or θ=315∘
27. θ=0∘ or θ=180∘
29. θ=60∘,θ=120∘,θ=240∘, or θ=300∘
31. θ=45∘,θ=135∘,θ=225∘, or θ=315∘
33. θ=104.04∘ or θ=284.04∘
35. θ=53.13∘ or θ=306.87∘
37. θ=188.21∘ or θ=351.79∘
39. A=135∘ or A=315∘
41. ϕ=210∘ or ϕ=330∘
43. B=90∘ or B=270∘
45. θ=210∘ or θ=330∘
47. B=90∘ or B=270∘
49. θ=210∘ or θ=330∘
51. ϕ=146∘ or ϕ=214∘
53. θ=54.74∘,θ=125.26∘,θ=234.74∘, or θ=305.26∘
55. θ=0∘,θ=180∘,θ=191.54∘, or θ=348.46∘
57. θ=60∘,θ=180∘, or θ=300∘
59. θ=26.57∘,θ=161.57∘,θ=206.57∘, or θ=341.57∘
61. θ=78.69∘,θ=108.43∘,θ=258.69∘, or θ=288.43∘
63. θ=0∘
65. 17.22∘
67. 35.66∘
5.3 Trigonometric Identities
Homework 5.3
1. not an identity
3. not an identity
5. identity
7. not an identity
9. not an identity
11. not an identity
13. identity
15. identity
17. (1+sinw)(1−sinw)=1−sin2w=cos2w
19.
(cosθ−sinθ)2=cos2θ−2cosθsinθ+sin2θ=(cos2θ+sin2θ)−2sinθcosθ=1−2sinθcosθ
21. tanθcosθ=sinθcosθ⋅cosθ=sinθ
23.
cos4x−sin4x=(cos2x−sin2x)(cos2x+sin2x)=(cos2x−sin2x)(1)=cos2x−sin2x
25. sinu1+cosu⋅1−cosu1−cosu=sinu(1−cosu)1−cos2u=sinu(1−cosu)sin2u=1−cosusinu
27. 1
29. 1
31. sin2A
33. tan2z
35. 3
37. 1
39. 6
41. cos2θ
43. cosθ
45. sin2t
47. 1+2sinθ+sin2θ
49. 3cos2ϕ−2
51. θ=90∘,θ=180∘,θ=270∘
53. θ=90∘,θ=210∘,θ=330∘
55. θ=210∘,θ=330∘
57. θ=18.43∘,θ=198.43∘
59. sinA=−513,tanA=−512
61. cosϕ=−4√37,tanϕ=−14√3
63. sinθ=−1√5,cosθ=2√5
65. sinθ=−35,cosθ=−45
67. sinθ=√32,cosθ=−12,tanθ=√3
69. sinβ=2√5,cosβ=−1√5,tanβ=−2
71.
sinC=1√5,cosC=2√5,tanC=12 or sinC=1√5,cosC=−2√5,tanC=−12
73. tanα1+tanα=sinαcosα1+sinαcosα⋅cosαcosα=sinαsinα+cosα
75. 1+tan2β1−tan2β=1cos2β1−sin2βcos2β⋅cos2βcos2β=1cos2β−sin2β
77.
a By the distance formula, √x2+y2=r, or x2+y2=r2.
b x2r2+y2r2=1
c (xr)2+(yr)2=1
d (cosθ)2+(sinθ)2=1
5.4 Chapter 5 Summary and Review
Chapter 5 Review Problems
1. −34√2
3. 1√6
5.
a 0.8660
b 0.9848; No
7.
a 1.4821
b 1.4821; Yes
9. 5sinx−2sinxcosy−cosy
11. 2tanθ−10tan2θ
13. Not equivalent
15. Equivalent
17. 2cos2α+cosα−6
19. tan2ϕ−2tanϕcosϕ+cos2ϕ
21. 6(2sin3x−sin2x)
23. (1+3tanθ)(1−3tanθ)
25. cosα+sinα
27. 32
29. 3tanC+2tanC−2
31. 51.32∘,308.68∘
33. 90∘,270∘,120∘,240∘
35. 90∘,210∘,330∘
37. 30∘,150∘,210∘,330∘
39. 0∘,120∘,240∘
41. 57.99∘,237.99∘
43. 90∘,270∘
45. 33.17∘
47. Identity
49. Not an identity
51. Not an identity
53. Identity
55. 1−cos2αtanα=sin2α⋅cosαsinα=sinαcosα
57.
sinθcosθ−sinθcosθsinθ⋅sinθcosθ=sinθ−sinθcos2θsin2θ=sinθ(1−cos2θ)sin2θ=sinθsin2θsin2θ=sinθ
59. 1sinθcosθ
61. 1
63. 0
65. 1
67. 1cos2β
69. 2+cost−2cos2t
71. sinβ=−6√85,cosβ=−7√85,tanβ=67
73. sinα=√215,cosα=−25,tanα=−√212
75. 0∘,180∘,270∘
77. 135∘,315∘
79. 0∘,60∘,180∘,300∘
81. 0∘,180∘