Skip to main content
Mathematics LibreTexts

11.4: Equations and Identities

  • Page ID
    122926
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    5.1 Algebra with Trigonometric Ratios

    Homework 5.1

    1. -2

    3. \(\dfrac{1}{\sqrt{2}}\)

    5. 6

    7. \(\dfrac{1}{2}\)

    9. 4

    11. 2

    13. 1

    15. 0

    17.

    a 0.7660

    b 0.8164

    c 0.7660

    19.

    a 0.6691

    b 1.8271

    c 0.6691

    21.

    a 1

    b 1

    c 1

    23.

    a \(-2 x^2-x\)

    b \(-2 \cos ^2 \theta-\cos \theta\)

    25.

    a \(4 S C\)

    b \(4 \sin \theta \cos \theta\)

    27.

    a \(5 C^2 S^3\)

    b \(5 \cos ^2 \theta \sin ^3 \theta\)

    29. \(-2 \cos t+2 \cos t \sin t ; 0.6360\)

    31. \(\tan \theta-\tan \phi ;-56.91\)

    33. \(2 \sin x \cos x-2 \sin (2 x) ; 0\)

    35. No

    37. No

    39. Yes

    41. No

    43. No

    45.

    a \(2 x^2-x\)

    b \(2 \sin ^2 A-\sin A\)

    47.

    a \(a b-3 a^2\)

    b \(\tan A \tan B-3 \tan ^2 A\)

    49.

    a \(2 C^2+C-1\)

    b \(2 \cos ^2 \phi+\cos \phi-1\)

    51.

    a \(a^2-b^2\)

    b \(\cos ^2 \theta-\cos ^2 \phi\)

    53.

    a \(1-2 T+T^2\)

    b \(1-2 \tan \theta+\tan ^2 \theta\)

    55.

    a \(T^4-4\)

    b \(\tan ^4 \theta-4\)

    57.

    a \(3(3 m+5 n)\)

    b \(3(3 \cos \alpha+5 \cos \beta)\)

    59.

    a \(5 r(r-2 q)\)

    b \(5 \tan C(\tan C-2 \tan B)\)

    61.

    a \((3 C+1)(3 C-1)\)

    b \((3 \cos \beta+1)(3 \cos \beta-1)\)

    63.

    a \(2 T^2(3 T-4)\)

    b \(2 \tan ^2 A(3 \tan A-4)\)

    65.

    a \((t-5)(t+4)\)

    b \((\tan \theta-5)(\tan \theta+4)\)

    67.

    a \((3 c-1)(c+1)\)

    b \((3 \cos B-1)(\cos B+1)\)

    5.2 Solving Equations

    Homework 5.2

    1. \(70^{\circ}\)

    3. \(40^{\circ}\)

    5. I: \(18^{\circ}\); II: \(162^{\circ}\); III: \(198^{\circ} ; \mathrm{IV}: 342^{\circ}\)

    7. I: \(52^{\circ}\); II: \(128^{\circ}\); III: \(232^{\circ} ; \mathrm{IV}: 308^{\circ}\)

    9.

    a 0, 4, 2, 0, 4

    b -1 or 2

    11.

    a \(1, \dfrac{\sqrt{3}+1}{2}, \sqrt{2}, \dfrac{\sqrt{3}+1}{2}\)

    b \(45^{\circ}\)

    13.

    a \(0, \dfrac{2-\sqrt{2}}{2}, \dfrac{1-\sqrt{3}}{2},-1\)

    b \(270^{\circ}\)

    15. \(x = 5, -3\)

    17. \(x = -3, 1, 2\)

    19. \(\theta = 30^{\circ}\) or \(\theta = 210^{\circ}\)

    21. \(\theta=60^{\circ}\) or \(\theta=300^{\circ}\)

    23. \(\theta=210^{\circ}\) or \(\theta=330^{\circ}\)

    25. \(\theta=225^{\circ}\) or \(\theta=315^{\circ}\)

    27. \(\theta=0^{\circ}\) or \(\theta=180^{\circ}\)

    29. \(\theta=60^{\circ}, \theta=120^{\circ}, \theta=240^{\circ}\), or \(\theta=300^{\circ}\)

    31. \(\theta=45^{\circ}, \theta=135^{\circ}, \theta=225^{\circ}\), or \(\theta=315^{\circ}\)

    33. \(\theta=104.04^{\circ}\) or \(\theta=284.04^{\circ}\)

    35. \(\theta=53.13^{\circ}\) or \(\theta=306.87^{\circ}\)

    37. \(\theta=188.21^{\circ}\) or \(\theta=351.79^{\circ}\)

    39. \(A=135^{\circ}\) or \(A=315^{\circ}\)

    41. \(\phi=210^{\circ}\) or \(\phi=330^{\circ}\)

    43. \(B=90^{\circ}\) or \(B=270^{\circ}\)

    45. \(\theta=210^{\circ}\) or \(\theta=330^{\circ}\)

    47. \(B=90^{\circ}\) or \(B=270^{\circ}\)

    49. \(\theta=210^{\circ}\) or \(\theta=330^{\circ}\)

    51. \(\phi=146^{\circ}\) or \(\phi=214^{\circ}\)

    53. \(\theta=54.74^{\circ}, \theta=125.26^{\circ}, \theta=234.74^{\circ}\), or \(\theta=305.26^{\circ}\)

    55. \(\theta=0^{\circ}, \theta=180^{\circ}, \theta=191.54^{\circ}\), or \(\theta=348.46^{\circ}\)

    57. \(\theta=60^{\circ}, \theta=180^{\circ}\), or \(\theta=300^{\circ}\)

    59. \(\theta=26.57^{\circ}, \theta=161.57^{\circ}, \theta=206.57^{\circ}\), or \(\theta=341.57^{\circ}\)

    61. \(\theta=78.69^{\circ}, \theta=108.43^{\circ}, \theta=258.69^{\circ}\), or \(\theta=288.43^{\circ}\)

    63. \(\theta=0^{\circ}\)

    65. \(17.22^{\circ}\)

    67. \(35.66^{\circ}\)

    5.3 Trigonometric Identities

    Homework 5.3

    1. not an identity

    3. not an identity

    5. identity

    7. not an identity

    9. not an identity

    11. not an identity

    13. identity

    15. identity

    17. \((1+\sin w)(1-\sin w)=1-\sin ^2 w=\cos ^2 w\)

    19.

    \begin{aligned}
    (\cos \theta-\sin \theta)^2 & =\cos ^2 \theta-2 \cos \theta \sin \theta+\sin ^2 \theta \\ & =\left(\cos ^2 \theta+\sin ^2 \theta\right)-2 \sin \theta \cos \theta=1-2 \sin \theta \cos \theta
    \end{aligned}

    21. \(\tan \theta \cos \theta=\dfrac{\sin \theta}{\cos \theta} \cdot \cos \theta=\sin \theta\)

    23.

    \begin{aligned}
    \cos ^4 x-\sin ^4 x&=\left(\cos ^2 x-\sin ^2 x\right)\left(\cos ^2 x+\sin ^2 x\right) \\
    &=\left(\cos ^2 x-\sin ^2 x\right)(1)=\cos ^2 x-\sin ^2 x
    \end{aligned}

    25. \(\dfrac{\sin u}{1+\cos u} \cdot \dfrac{1-\cos u}{1-\cos u}=\dfrac{\sin u(1-\cos u)}{1-\cos ^2 u}= \dfrac{\sin u(1-\cos u)}{\sin ^2 u}=\dfrac{1-\cos u}{\sin u}\)

    27. 1

    29. 1

    31. \(\sin ^2 A\)

    33. \(\tan ^2 z\)

    35. 3

    37. 1

    39. 6

    41. \(\cos 2 \theta\)

    43. \(\cos \theta\)

    45. \(\sin 2 t\)

    47. \(1 + 2 \sin \theta + \sin ^2 \theta\)

    49. \(3 \cos ^2 \phi - 2\)

    51. \(\theta=90^{\circ}, \theta=180^{\circ}, \theta=270^{\circ}\)

    53. \(\theta=90^{\circ}, \theta=210^{\circ}, \theta=330^{\circ}\)

    55. \(\theta=210^{\circ}, \theta=330^{\circ}\)

    57. \(\theta=18.43^{\circ}, \theta=198.43^{\circ}\)

    59. \(\sin A=\dfrac{-5}{13}, \tan A=\dfrac{-5}{12}\)

    61. \(\cos \phi=\dfrac{-4 \sqrt{3}}{7}, \tan \phi=\dfrac{-1}{4 \sqrt{3}}\)

    63. \(\sin \theta=\dfrac{-1}{\sqrt{5}}, \quad \cos \theta=\dfrac{2}{\sqrt{5}}\)

    65. \(\sin \theta=\dfrac{-3}{5}, \quad \cos \theta=\dfrac{-4}{5}\)

    67. \(\sin \theta=\dfrac{\sqrt{3}}{2}, \quad \cos \theta=\dfrac{-1}{2}, \quad \tan \theta=\sqrt{3}\)

    69. \(\sin \beta=\dfrac{2}{\sqrt{5}}, \quad \cos \beta=\dfrac{-1}{\sqrt{5}}, \quad \tan \beta=-2\)

    71.

    \begin{aligned}
    \sin C & =\dfrac{1}{\sqrt{5}}, \quad \cos C=\dfrac{2}{\sqrt{5}}, \quad \tan C=\dfrac{1}{2} \\
    \text { or } \quad \sin C & =\dfrac{1}{\sqrt{5}}, \quad \cos C=\dfrac{-2}{\sqrt{5}}, \quad \tan C=\dfrac{-1}{2}
    \end{aligned}

    73. \(\dfrac{\tan \alpha}{1+\tan \alpha}=\dfrac{\frac{\sin \alpha}{\cos \alpha}}{1+\frac{\sin \alpha}{\cos \alpha}} \cdot \dfrac{\cos \alpha}{\cos \alpha}=\dfrac{\sin \alpha}{\sin \alpha+\cos \alpha}\)

    75. \(\dfrac{1+\tan ^2 \beta}{1-\tan ^2 \beta}=\dfrac{\frac{1}{\cos ^2 \beta}}{1-\frac{\sin ^2 \beta}{\cos ^2 \beta}} \cdot \dfrac{\cos ^2 \beta}{\cos ^2 \beta}= \dfrac{1}{\cos ^2 \beta-\sin ^2 \beta}\)

    77. Screen Shot 2023-02-14 at 11.29.42 PM.png

    a By the distance formula, \(\sqrt{x^2+y^2}=r\), or \(x^2+y^2=r^2\).

    b \(\dfrac{x^2}{r^2}+\dfrac{y^2}{r^2}=1\)

    c \(\left(\dfrac{x}{r}\right)^2+\left(\dfrac{y}{r}\right)^2=1\)

    d \((\cos \theta)^2+(\sin \theta)^2=1\)

    5.4 Chapter 5 Summary and Review

    Chapter 5 Review Problems

    1. \(\dfrac{-3}{4 \sqrt{2}}\)

    3. \(\dfrac{1}{\sqrt{6}}\)

    5.

    a 0.8660

    b 0.9848; No

    7.

    a 1.4821

    b 1.4821; Yes

    9. \(5 \sin x-2 \sin x \cos y-\cos y\)

    11. \(2 \tan \theta-10 \tan ^2 \theta\)

    13. Not equivalent

    15. Equivalent

    17. \(2 \cos ^2 \alpha+\cos \alpha-6\)

    19. \(\tan ^2 \phi-2 \tan \phi \cos \phi+\cos ^2 \phi\)

    21. \(6(2 \sin 3 x-\sin 2 x)\)

    23. \((1+3 \tan \theta)(1-3 \tan \theta)\)

    25. \(\cos \alpha+\sin \alpha\)

    27. \(\dfrac{3}{2}\)

    29. \(\dfrac{3 \tan C+2}{\tan C-2}\)

    31. \(51.32^{\circ}, 308.68^{\circ}\)

    33. \(90^{\circ}, 270^{\circ}, 120^{\circ}, 240^{\circ}\)

    35. \(90^{\circ}, 210^{\circ}, 330^{\circ}\)

    37. \(30^{\circ}, 150^{\circ}, 210^{\circ}, 330^{\circ}\)

    39. \(0^{\circ}, 120^{\circ}, 240^{\circ}\)

    41. \(57.99^{\circ}, 237.99^{\circ}\)

    43. \(90^{\circ}, 270^{\circ}\)

    45. \(33.17^{\circ}\)

    47. Identity

    49. Not an identity

    51. Not an identity

    53. Identity

    55. \(\dfrac{1-\cos ^2 \alpha}{\tan \alpha}=\sin ^2 \alpha \cdot \dfrac{\cos \alpha}{\sin \alpha}=\sin \alpha \cos \alpha\)

    57.

    \begin{aligned}
    \dfrac{\frac{\sin \theta}{\cos \theta}-\sin \theta \cos \theta}{\sin \theta \cdot \frac{\sin \theta}{\cos \theta}}&=\dfrac{\sin \theta-\sin \theta \cos ^2 \theta}{\sin ^2 \theta} \\
    & =\dfrac{\sin \theta\left(1-\cos ^2 \theta\right)}{\sin ^2 \theta}=\dfrac{\sin \theta \sin ^2 \theta}{\sin ^2 \theta}=\sin \theta
    \end{aligned}

    59. \(\dfrac{1}{\sin \theta \cos \theta}\)

    61. 1

    63. 0

    65. 1

    67. \(\dfrac{1}{\cos ^2 \beta}\)

    69. \(2+\cos t-2 \cos ^2 t\)

    71. \(\sin \beta=\dfrac{-6}{\sqrt{85}}, \quad \cos \beta=\dfrac{-7}{\sqrt{85}}, \quad \tan \beta=\dfrac{6}{7}\)

    73. \(\sin \alpha=\dfrac{\sqrt{21}}{5}, \cos \alpha=\dfrac{-2}{5}, \quad \tan \alpha=\dfrac{-\sqrt{21}}{2}\)

    75. \(0^{\circ}, 180^{\circ}, 270^{\circ}\)

    77. \(135^{\circ}, 315^{\circ}\)

    79. \(0^{\circ}, 60^{\circ}, 180^{\circ}, 300^{\circ}\)

    81. \(0^{\circ}, 180^{\circ}\)


    This page titled 11.4: Equations and Identities is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by Katherine Yoshiwara via source content that was edited to the style and standards of the LibreTexts platform.

    • Was this article helpful?