5.3E: Exercises
( \newcommand{\kernel}{\mathrm{null}\,}\)
5.3: The Other Trigonometric Functions
Verbal
1) On an interval of [0,2π), can the sine and cosine values of a radian measure ever be equal? If so, where?
- Answer
-
Yes, when the reference angle is π4 and the terminal side of the angle is in quadrants I and III. Thus, at x=π4,5π4, the sine and cosine values are equal.
2) What would you estimate the cosine of π degrees to be? Explain your reasoning.
3) For any angle in quadrant II, if you knew the sine of the angle, how could you determine the cosine of the angle?
- Answer
-
Substitute the sine of the angle in for y in the Pythagorean Theorem x2+y2=1. Solve for x and take the negative solution.
4) Describe the secant function.
5) Tangent and cotangent have a period of π. What does this tell us about the output of these functions?
- Answer
-
The outputs of tangent and cotangent will repeat every π units.
Algebraic
For the exercises 6-17, find the exact value of each expression.
6) tanπ6
7) secπ6
- Answer
-
2√33
8) cscπ6
9) cotπ6
- Answer
-
√3
10) tanπ4
11) secπ4
- Answer
-
√2
12) cscπ4
13) cotπ4
- Answer
-
1
14) tanπ3
15) secπ3
- Answer
-
2
16) cscπ3
17) cotπ3
- Answer
-
√33
For the exercises 18-48, use reference angles to evaluate the expression.
18) tan5π6
19) sec7π6
- Answer
-
−2√33
20) csc11π6
21) cot13π6
- Answer
-
√3
22) tan7π4
23) sec3π4
- Answer
-
−√2
24) csc5π4
25) cot11π4
- Answer
-
−1
26) tan8π3
27) sec4π3
- Answer
-
−2
28) csc2π3
29) cot5π3
- Answer
-
−√33
30) tan225°
31) sec300°
- Answer
-
2
32) csc150°
33) cot240°
- Answer
-
√33
34) tan330°
35) sec120°
- Answer
-
−2
36) csc210°
37) cot315°
- Answer
-
−1
38) If sint=34, and t is in quadrant II, find cost,sect,csct,tant,cott.
39) If cost=−13, and t is in quadrant III, find sint,sect,csct,tant,cott.
- Answer
-
If sint=−2√23,sect=−3,csct=−csct=−3√24,tant=2√2,cott=√24
40) If tant=125, and 0≤t<π2, find sint,cost,sect,csct, and cott.
41) If sint=√32 and cost=12, find sect,csct,tant, and cott.
- Answer
-
sect=2,csct=csct=2√33,tant=√3,cott=√33
42) If sin40°≈0.643cos40°≈0.766sec40°,csc40°,tan40°, and cot40°.
43) If sint=√22, what is the sin(−t)?
- Answer
-
−√22
44) If cost=12, what is the cos(−t)?
45) If sect=3.1, what is the sec(−t)?
- Answer
-
3.1
46) If csct=0.34, what is the csc(−t)?
47) If tant=−1.4, what is the tan(−t)?
- Answer
-
1.4
48) If cott=9.23, what is the cot(−t)?
Graphical
For the exercises 49-51, use the angle in the unit circle to find the value of the each of the six trigonometric functions.
49)
- Answer
-
sint=√22,cost=√22,tant=1,cott=1,sect=√2,csct=csct=√2
50)
51)
- Answer
-
sint=−√32,cost=−12,tant=√3,cott=√33,sect=−2,csct=−csct=−2√33
Technology
For the exercises 52-61, use a graphing calculator to evaluate.
52) csc5π9
53) cot4π7
- Answer
-
–0.228
54) secπ10
55) tan5π8
- Answer
-
–2.414
56) sec3π4
57) cscπ4
- Answer
-
1.414
58) tan98°
59) cot33°
- Answer
-
1.540
60) cot140°
61) sec310°
- Answer
-
1.556
Extensions
For the exercises 62-69, use identities to evaluate the expression.
62) If tan(t)≈2.7, and sin(t)≈0.94, find cos(t).
63) If tan(t)≈1.3, and cos(t)≈0.61, find sin(t).
- Answer
-
sin(t)≈0.79
64) If csc(t)≈3.2, and csc(t)≈3.2, and cos(t)≈0.95, find tan(t).
65) If cot(t)≈0.58, and cos(t)≈0.5, find csc(t).
- Answer
-
csc(t)≈1.16
66) Determine whether the function f(x)=2sinxcosx is even, odd, or neither.
67) Determine whether the function f(x)=3sin2xcosx+secx is even, odd, or neither.
- Answer
-
even
68) Determine whether the function f(x)=sinx−2cos2x is even, odd, or neither.
69) Determine whether the function f(x)=csc2x+secx is even, odd, or neither.
- Answer
-
even
For the exercises 70-71, use identities to simplify the expression.
70) cscttant
71) sectcsct
- Answer
-
sintcost=tant
Real-World Applications
72) The amount of sunlight in a certain city can be modeled by the function h=15cos(1600d), where h represents the hours of sunlight, and d is the day of the year. Use the equation to find how many hours of sunlight there are on February 10, the 42nd day of the year. State the period of the function.
73) The amount of sunlight in a certain city can be modeled by the function h=16cos(1500d), where h represents the hours of sunlight, and d is the day of the year. Use the equation to find how many hours of sunlight there are on September 24, the 267th day of the year. State the period of the function.
- Answer
-
13.77 hours, period: 1000π
74) The equation P=20sin(2πt)+100 models the blood pressure, P, where t represents time in seconds.
- Find the blood pressure after 15 seconds.
- What are the maximum and minimum blood pressures?
75) The height of a piston, h, in inches, can be modeled by the equation y=2cosx+6, where x represents the crank angle. Find the height of the piston when the crank angle is 55°.
- Answer
-
7.73 inches
76) The height of a piston, h,in inches, can be modeled by the equation y=2cosx+5, where x represents the crank angle. Find the height of the piston when the crank angle is 55°.