# 7.1E: Exercises

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

## Verbal

1) We know $$g(x)=\cos x$$ is an even function, and $$f(x)=\sin x$$ and $$h(x)=\tan x$$are odd functions. What about $$G(x)=\cos ^2 x$$, $$F(x)=\sin ^2 x$$ and $$H(x)=\tan ^2 x$$? Are they even, odd, or neither? Why?

All three functions, $$F,G,$$ and $$H$$$,$ are even.

This is because

$$F(-x)=\sin(-x)\sin(-x)=(-\sin x)(-\sin x)=\sin^2 x=F(x),G(-x)=\cos(-x)\cos(-x)=\cos x\cos x= cos^2 x=H(-x)=\tan(-x)\tan(-x)=(-\tan x)(-\tan x)=\tan2x=H(x)$$

2) Examine the graph of $$f(x)=\sec x$$ on the interval $$[-\pi ,\pi ]$$$.$How can we tell whether the function is even or odd by only observing the graph of $$f(x)=\sec x$$?

3) After examining the reciprocal identity for $$\sec t$$$,$ explain why the function is undefined at certain points.

When $$\cos t = 0$$$,$ then $$\sec t = 10$$$,$ which is undefined.

4) All of the Pythagorean identities are related. Describe how to manipulate the equations to get from $$\sin^2t+\cos^2t=1$$ to the other forms.

## Algebraic

For the exercises 5-15, use the fundamental identities to fully simplify the expression.

5) $$\sin x \cos x \sec x$$

$$\sin x$$

6) $$\sin(-x)\cos(-x)\csc(-x)$$

7) $$\tan x\sin x+\sec x\cos^2x$$

$$\sec x$$

8) $$\csc x+\cos x\cot(-x)$$

9) $$\dfrac{\cot t+\tan t}{\sec (-t)}$$

$$\csc x$$

10) $$3\sin^3 t\csc t+\cos^2 t+2\cos(-t)\cos t$$

11) $$-\tan(-x)\cot(-x)$$

$$-1$$

12) $$\dfrac{-\sin (-x)\cos x\sec x\csc x\tan x}{\cot x}$$

13) $$\dfrac{1+\tan ^2\theta }{\csc ^2\theta }+\sin ^2\theta +\dfrac{1}{\sec ^\theta }$$

$$\sec^2 x$$

14) $$\left (\dfrac{\tan x}{\csc ^2 x}+\dfrac{\tan x}{\sec ^2 x} \right )\left (\dfrac{1+\tan x}{1+\cot x} \right )-\dfrac{1}{\cos ^2 x}$$

15) $$\dfrac{1-\cos ^2 x}{\tan ^2 x}+2\sin ^2 x$$

$$\sin^2 x+1$$

For the exercises 16-28, simplify the first trigonometric expression by writing the simplified form in terms of the second expression.

16) $$\dfrac{\tan x+\cot x}{\csc x}; \cos x$$

17) $$\dfrac{\sec x+\csc x}{1+\tan x}; \sin x$$

$$\dfrac{1}{\sin x}$$

18) $$\dfrac{\cos x}{1+\sin x}+\tan x; \cos x$$

19) $$\dfrac{1}{\sin x\cos x}-\cot x; \cot x$$

$$\dfrac{1}{\cot x}$$

20) $$\dfrac{1}{1-\cos x}-\dfrac{\cos x}{1+\cos x}; \csc x$$

21) $$(\sec x+\csc x)(\sin x+\cos x)-2-\cot x; \tan x$$

$$\tan x$$

22) $$\dfrac{1}{\csc x-\sin x}; \sec x$$ and $$\tan x$$

23) $$\dfrac{1-\sin x}{1+\sin x}-\dfrac{1+\sin x}{1-\sin x}; \sec x$$ and $$\tan x$$

$$-4\sec x \tan x$$

24) $$\tan x; \sec x$$

25) $$\sec x; \cot x$$

$$\pm \sqrt{\dfrac{1}{\cot ^2 x}+1}$$

26) $$\sec x; \sin x$$

27) $$\cot x; \sin x$$

$$\dfrac{\pm \sqrt{1-\sin ^2 x}}{\sin x}$$

28) $$\cot x; \csc x$$

For the exercises 29-33, verify the identity.

29) $$\cos x-\cos^3x=\cos x \sin^2 x$$

Answers will vary. Sample proof:

\begin{align*} \cos x-\cos^3x &= \cos x (1-\cos^2 x)\\ &= \cos x\sin ^x \end{align*}

30) $$\cos x(\tan x-\sec(-x))=\sin x-1$$

31) $$\dfrac{1+\sin ^2x}{\cos ^2 x}=\dfrac{1}{\cos ^2 x}+\dfrac{\sin ^2x}{\cos ^2 x}=1+2\tan ^2x$$

Answers will vary. Sample proof:

\begin{align*} \dfrac{1+\sin ^2x}{\cos ^2 x} &= \dfrac{1}{\cos ^2 x}+\dfrac{\sin ^2x}{\cos ^2 x}\\ &= \sec ^2x+\tan ^2x\\ &= \tan ^2x+1+\tan ^2x\\ &= 1+2\tan ^2x \end{align*}

32) $$(\sin x+\cos x)^2=1+2 \sin x\cos x$$

33) $$\cos^2x-\tan^2x=2-\sin^2x-\sec^2x$$

Answers will vary. Sample proof:

\begin{align*} \cos^2x-\tan^2x &= 1-\sin^2x-\left (\sec^2x -1 \right )\\ &= 1-\sin^2x-\sec^2x +1\\ &= 2-\sin^2x-\sec^2x \end{align*}

## Extensions

For the exercises 34-39, prove or disprove the identity.

34) $$\dfrac{1}{1+\cos x}-\dfrac{1}{1-\cos (-x)}=-2\cot x\csc x$$

35) $$\csc^2x(1+\sin^2x)=\cot^2x$$

False

36) $$\left (\dfrac{\sec ^2(-x)-\tan ^2x}{\tan x} \right )\left (\dfrac{2+2\tan x}{2+2\cot x} \right )-2\sin ^2x=\cos 2x$$

37) $$\dfrac{\tan x}{\sec x}\sin (-x)=\cos ^2x$$

False

38) $$\dfrac{\sec (-x)}{\tan x+\cot x}=-\sin (-x)$$

39) $$\dfrac{1+\sin x}{\cos x}=\dfrac{\cos x}{1+\sin (-x)}$$

Proved with negative and Pythagorean identities

For the exercises 40-, determine whether the identity is true or false. If false, find an appropriate equivalent expression.

40) $$\dfrac{\cos ^2 \theta -\sin ^2 \theta }{1-\tan ^\theta }=\sin ^2 \theta$$

41) $$3\sin^2\theta + 4\cos^2\theta =3+\cos^2\theta$$

True

\begin{align*} 3\sin^2\theta + 4\cos^2\theta &= 3\sin ^2\theta +3\cos ^2\theta +\cos^2\theta \\ &= 3\left ( \sin ^2\theta +\cos ^2\theta \right )+\cos^2\theta \\ &= 3+\cos^2\theta \end{align*}

42) $$\dfrac{\sec \theta +\tan \theta }{\cot \theta+\cos ^\theta }=\sec ^2 \theta$$

7.1E: Exercises is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by LibreTexts.