1.5: Chapter 1 Review
- Page ID
- 147260
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)PROBLEM SET: CHAPTER 1 REVIEW
Solving Linear Equations in One Variable (1.1)
- Is \(x=-2\) a solution to the equation \(-4x - 12 = -2\)?
- Solve \(6x − 9 = 18\)
- Solve \(5 − 3a = 5\)
- Solve \(\frac{2 − 5y}{6} = −8\)
- Solve \(7 − 9y + 12 = 3y + 11 − 11y\)
- Solve \(\frac{1}{3} x −\frac{3}{2} + \frac{5}{2} x = \frac{5}{6} x + \frac{1}{4}\)
- Solve \(4 (4a − 1) = 5 (a − 3) + 2 (a − 2)\)
- Solve \(3 (4 − y) − 2 (y + 7) = −5y\)
- Twice the sum of a number and \(4\) is equal to \(3\) times the sum of the number and \(1\). Find the number.
Solving Linear Equations in Two Variables (1.2)
- Is the point \((3, - 2)\) on the line \(5x - 2y = 11\)?
- Find two points on the line \(2x - 6 = 0\).
- Find the slope of the line whose equation is \(2x + 3y = 6\).
- Find the slope of the line whose equation is \(y = - 3x + 5\).
- Graph the line \(y = \dfrac{2}{3}x - 5\) by using slope-intercept form.
- Graph the line \(y = -2x + 3\) by using slope-intercept form.
- Find both the x and y intercepts of the line \(3x - 2y = 12\).
- Graph the line \(5x - 3y =30\) by using intercepts.
- Graph the line \(2x - 3y + 6 = 0\) by using intercepts.
Determining the Equation of a Line (1.3)
- Find an equation of the line whose slope is 3 and y-intercept 5.
- Find an equation of the line whose x-intercept is 2 and y-intercept 3.
- Find an equation of the line that has slope 3 and passes through the point (2, 15).
- Find an equation of the line that has slope -3/2 and passes through the point (4, 3).
- Find an equation of the line that passes through the points (0, 32) and (100, 212).
- Find an equation of the x-axis.
Solving Systems of Equations in Two Variables (1.4)
Determine whether the given ordered pair is a solution to the system of equations.
- \(\left\{\begin{array} {l} -3x-5y &= 13\\-x+4y &= 10\end{array}\right.\) and \((-6,1)\)
- Answer
-
Yes
- \(\left\{\begin{array} {l} 3x+7y &= 1\\ 2x+4y &= 0 \end{array}\right.\) and \((2,3)\)
Solve these two systems by graphing.
- \(\left\{\begin{array} {l} y &= 2x-7\\ y &= -x+2 \end{array}\right.\)
- Answer
-
\((3,-1)\)
- \(\left\{\begin{array} {l} y &= -\dfrac{1}{2}x-1\\ y &= 3x+6 \end{array}\right.\)
Solve these two systems by substitution.
- \(\left\{\begin{array} {l} x+5y &= 5\\ 2x+3y &= 4 \end{array}\right.\)
- Answer
-
\((-1,2)\)
- \(\left\{\begin{array} {l} x-0.2y &= 1\\ -10x+2y &= 5 \end{array}\right.\)
Solve these two systems by elimination by addition.
- \(\left\{\begin{array} {l} x+5y &= 5\\ 2x+3y &= 4 \end{array}\right.\)
- Answer
-
\((-1,2)\)
- \(\left\{\begin{array} {l} x-0.2y &= 1\\ -10x+2y &= 5 \end{array}\right.\)
- The supply curve for a product is \(y = 250x - 1000\). The demand curve for the same product is \(y = - 350x + 8,000\), where x is the price and y the number of items produced. Find the following.
- At a price of $10, how many items will be in demand?
- At what price will 4,000 items be supplied?
- What is the equilibrium price for this product?
- How many items will be manufactured at the equilibrium price?
- The supply curve for a product is \(y = 625x - 600\) and the demand curve for the same product is \(y = - 125x + 8,400\), where x is the price and y the number of items produced. Find the equilibrium price and determine the number of items that will be produced at that price.
-
A cell phone factory has a cost of production of \(C(x)=150x+10,000\) and a revenue function \(R(x)=200x\). What is the break-even point?
- A musician charges \(C(x)=64x+20,000\), where \(x\) is the total number of attendees at the concert. The venue charges \(\$80\) per ticket. After how many people buy tickets does the venue break even, and what is the value of the total tickets sold at that point?
- Answer
-
\((1250, $100,000)\)