5.2E: Constant Coefficient Homogeneous Equations (Exercises)
- Last updated
- Jul 20, 2020
- Save as PDF
- Page ID
- 44255
( \newcommand{\kernel}{\mathrm{null}\,}\)
Q5.2.1
In Exercises 5.2.1-5.2.12 find the general solution.
1. y''+5y'-6y=0
2. y''-4y'+5y=0
3. y''+8y'+7y=0
4. y''-4y'+4y=0
5. y'' +2y'+10y=0
6. y''+6y'+10y=0
7. y''-8y'+16y=0
8. y''+y'=0
9. y''-2y'+3y=0
10. y''+6y'+13y=0
11. 4y''+4y'+10y=0
12. 10y''-3y'-y=0
Q5.2.2
In Exercises 5.2.13-5.2.17 solve the initial value problem.
13. y''+14y'+50y=0, \quad y(0)=2,\quad y'(0)=-17
14. 6y''-y'-y=0, \quad y(0)=10,\quad y'(0)=0
15. 6y''+y'-y=0, \quad y(0)=-1,\quad y'(0)=3
16. 4y''-4y'-3y=0, \quad y(0)={13\over 12},\quad y'(0)={23 \over 24}
17. 4y''-12y'+9y=0, \quad y(0)=3,\quad y'(0)={5\over 2}
Q5.2.3
In Exercises 5.2.18-5.2.21 solve the initial value problem and graph the solution.
18. y''+7y'+12y=0, \quad y(0)=-1,\quad y'(0)=0
19. y''-6y'+9y=0, \quad y(0)=0,\quad y'(0)=2
20. 36y''-12y'+y=0, \quad y(0)=3,\quad y'(0)={5\over2}
21. y''+4y'+10y=0, \quad y(0)=3,\quad y'(0)=-2
Q5.2.4
22.
- Suppose y is a solution of the constant coefficient homogeneous equation ay''+by'+cy=0. \tag{A} Let z(x)=y(x-x_0), where x_0 is an arbitrary real number. Show that az''+bz'+cz=0.\nonumber
- Let z_1(x)=y_1(x-x_0) and z_2(x)=y_2(x-x_0), where \{y_1,y_2\} is a fundamental set of solutions of (A). Show that \{z_1,z_2\} is also a fundamental set of solutions of (A).
- The statement of Theorem 5.2.1 is convenient for solving an initial value problem ay''+by'+cy=0, \quad y(0)=k_0,\quad y'(0)=k_1,\nonumber where the initial conditions are imposed at x_0=0. However, if the initial value problem is ay''+by'+cy=0, \quad y(x_0)=k_0,\quad y'(x_0)=k_1, \tag{B} where x_0\ne0, then determining the constants in y=c_1e^{r_1x}+c_2e^{r_2x}, \quad y=e^{r_1x}(c_1+c_2x),\mbox{ or } y=e^{\lambda x}(c_1\cos\omega x+c_2\sin\omega x)\nonumber (whichever is applicable) is more complicated. Use (b) to restate Theorem 5.2.1 in a form more convenient for solving (B).
Q5.2.5
In Exercises 5.2.23-5.2.28 use a method suggested by Exercise 5.2.22 to solve the initial value problem.
23. y''+3y'+2y=0, \quad y(1)=-1,\quad y'(1)=4
24. y''-6y'-7y=0, \quad y(2)=-{1\over3},\quad y'(2)=-5
25. y''-14y'+49y=0, \quad y(1)=2,\quad y'(1)=11
26. 9y''+6y'+y=0, \quad y(2)=2,\quad y'(2)=-{14\over3}
27. 9y''+4y=0, \quad y(\pi/4)=2,\quad y'(\pi/4)=-2
28. y''+3y=0, \quad y(\pi/3)=2,\quad y'(\pi/3)=-1
Q5.2.6
29. Prove: If the characteristic equation of
ay''+by'+cy=0 \tag{A}
has a repeated negative root or two roots with negative real parts, then every solution of (A) approaches zero as x\to\infty.
30. Suppose the characteristic polynomial of ay''+by'+cy=0 has distinct real roots r_1 and r_2. Use a method suggested by Exercise 5.2.22 to find a formula for the solution of
ay''+by'+cy=0, \quad y(x_0)=k_0,\quad y'(x_0)=k_1.\nonumber
31 Suppose the characteristic polynomial of ay''+by'+cy=0 has a repeated real root r_1. Use a method suggested by Exercise 5.2.22 to find a formula for the solution of
ay''+by'+cy=0, \quad y(x_0)=k_0,\quad y'(x_0)=k_1.\nonumber
32. Suppose the characteristic polynomial of ay''+by'+cy=0 has complex conjugate roots \lambda\pm i\omega. Use a method suggested by Exercise 5.2.22 to find a formula for the solution of
ay''+by'+cy=0, \quad y(x_0)=k_0,\quad y'(x_0)=k_1.\nonumber
33. Suppose the characteristic equation of
ay''+by'+cy=0 \tag{A} has a repeated real root r_1. Temporarily, think of e^{rx} as a function of two real variables x and r.
- Show that a{\partial^2\over\partial^2 x}(e^{rx})+b{\partial \over\partial x}(e^{rx}) +ce^{rx}=a(r-r_1)^2e^{rx}. \tag{B}
- Differentiate (B) with respect to r to obtain a{\partial\over\partial r}\left({\partial^2\over\partial^2 x}(e^{rx})\right)+b{\partial\over\partial r}\left({\partial \over\partial x}(e^{rx})\right) +c(xe^{rx})=[2+(r-r_1)x]a(r-r_1)e^{rx}. \tag{C}
- Reverse the orders of the partial differentiations in the first two terms on the left side of (C) to obtain a{\partial^2\over\partial x^2}(xe^{rx})+b{\partial\over\partial x}(xe^{rx})+c(xe^{rx})=[2+(r-r_1)x]a(r-r_1)e^{rx}. \tag{D}
- Set r=r_1 in (B) and (D) to see that y_1=e^{r_1x} and y_2=xe^{r_1x} are solutions of (A)
34. In calculus you learned that e^u, \cos u, and \sin u can be represented by the infinite series
e^u=\sum_{n=0}^\infty {u^n\over n!} =1+{u\over 1!}+{u^2\over 2!}+{u^3\over 3!}+\cdots+{u^n\over n!}+\cdots \tag{A}
\cos u=\sum_{n=0}^\infty (-1)^n{u^{2n}\over(2n)!} =1-{u^2\over2!}+{u^4\over4!}+\cdots+(-1)^n{u^{2n}\over(2n)!} +\cdots, \tag{B}
and
\sin u=\sum_{n=0}^\infty (-1)^n{u^{2n+1}\over(2n+1)!} =u-{u^3\over3!}+{u^5\over5!}+\cdots+(-1)^n {u^{2n+1}\over(2n+1)!} +\cdots \tag{C}
for all real values of u. Even though you have previously considered (A) only for real values of u, we can set u=i\theta, where \theta is real, to obtain
e^{i\theta}=\sum_{n=0}^\infty {(i\theta)^n\over n!}. \tag{D}
Given the proper background in the theory of infinite series with complex terms, it can be shown that the series in (D) converges for all real \theta.
- Recalling that i^2=-1, write enough terms of the sequence \{i^n\} to convince yourself that the sequence is repetitive: 1,i,-1,-i,1,i,-1,-i,1,i,-1,-i,1,i,-1,-i,\cdots.\nonumber Use this to group the terms in (D) as \begin{aligned} e^{i\theta}&=\left(1-{\theta^2\over2}+{\theta^4\over4}+\cdots\right) +i\left(\theta-{\theta^3\over3!}+{\theta^5\over5!}+\cdots\right)\\[4pt] &=\sum_{n=0}^\infty (-1)^n{\theta^{2n}\over(2n)!} +i\sum_{n=0}^\infty (-1)^n{\theta^{2n+1}\over(2n+1)!}.\end{aligned}\nonumber By comparing this result with (B) and (C), conclude that e^{i\theta}=\cos\theta+i\sin\theta. \tag{E} This is Euler’s identity.
- Starting from e^{i\theta_1}e^{i\theta_2}=(\cos\theta_1+i\sin\theta_1) (\cos\theta_2+i\sin\theta_2),\nonumber collect the real part (the terms not multiplied by i) and the imaginary part (the terms multiplied by i) on the right, and use the trigonometric identities \begin{aligned} \cos(\theta_1+\theta_2)&=\cos\theta_1\cos\theta_2-\sin\theta_1\sin\theta_2\\[4pt] \sin(\theta_1+\theta_2)&=\sin\theta_1\cos\theta_2+\cos\theta_1\sin\theta_2\end{aligned}\nonumber to verify that e^{i(\theta_1+\theta_2)}=e^{i\theta_1}e^{i\theta_2},\nonumber as you would expect from the use of the exponential notation e^{i\theta}.
- If \alpha and \beta are real numbers, define e^{\alpha+i\beta}=e^\alpha e^{i\beta}=e^\alpha(\cos\beta+i\sin\beta). \tag{F} Show that if z_1=\alpha_1+i\beta_1 and z_2=\alpha_2+i\beta_2 then e^{z_1+z_2}=e^{z_1}e^{z_2}.\nonumber
- Let a, b, and c be real numbers, with a\ne0. Let z=u+iv where u and v are real-valued functions of x. Then we say that z is a solution of ay''+by'+cy=0 \tag{G} if u and v are both solutions of (G). Use Theorem 5.2.1 (c) to verify that if the characteristic equation of (G) has complex conjugate roots \lambda\pm i\omega then z_1=e^{(\lambda+i\omega)x} and z_2=e^{(\lambda-i\omega)x} are both solutions of (G).