Skip to main content
Mathematics LibreTexts

4.2E: Exercises

  • Page ID
    120152
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Exercises

    In Exercises 1 - 16, use the six-step procedure to graph the rational function. Be sure to draw any asymptotes as dashed lines.

    1. \(f(x) = \dfrac{4}{x + 2}\)
    2. \(f(x) = \dfrac{5x}{6 - 2x}\)
    3. \(f(x) = \dfrac{1}{x^{2}}\)
    4. \(f(x) = \dfrac{1}{x^{2} + x - 12}\)
    5. \(f(x) = \dfrac{2x - 1}{-2x^{2} - 5x + 3}\)
    6. \(f(x) = \dfrac{x}{x^{2} + x - 12}\)
    7. \(f(x) = \dfrac{4x}{x^2+4}\)
    8. \(f(x) = \dfrac{4x}{x^2-4}\)
    9. \(f(x) = \dfrac{x^2-x-12}{x^2+x-6}\)
    10. \(f(x) = \dfrac{3x^2-5x-2}{x^2-9}\)
    11. \(f(x) = \dfrac{x^2-x-6}{x+1}\)
    12. \(f(x) = \dfrac{x^2-x}{3-x}\)
    13. \(f(x) = \dfrac{x^3+2x^2+x}{x^2-x-2}\)
    14. \(f(x) = \dfrac{-x^{3} + 4x}{x^{2} - 9}\)
    15. \(f(x) = \dfrac{x^3-2x^2+3x}{2x^2+2}\)
    16. \(f(x) = \dfrac{x^{2} - 2x + 1}{x^{3} + x^{2} - 2x}\)

    In Exercises 17 - 20, graph the rational function by applying transformations to the graph of \(y = \dfrac{1}{x}\).

    1. \(f(x) = \dfrac{1}{x - 2}\)
    2. \(g(x) = 1 - \dfrac{3}{x}\)
    3. \(h(x) = \dfrac{-2x + 1}{x}\) (Hint: Divide)
    4. \(j(x) = \dfrac{3x - 7}{x - 2}\) (Hint: Divide)
    5. Discuss with your classmates how you would graph \(f(x) = \dfrac{ax + b}{cx + d}\). What restrictions must be placed on \(a, b, c\) and \(d\) so that the graph is indeed a transformation of \(y = \dfrac{1}{x}\)?
    6. In Example 3.1.1 in Section 3.1 we showed that \(p(x) = \frac{4x+x^3}{x}\) is not a polynomial even though its formula reduced to \(4 + x^{2}\) for \(x \neq 0\). However, it is a rational function similar to those studied in the section. With the help of your classmates, graph \(p(x)\).
    7. Let \(g(x) = \displaystyle \frac{x^{4} - 8x^{3} + 24x^{2} - 72x + 135}{x^{3} - 9x^{2} + 15x - 7}.\;\) With the help of your classmates, find the \(x\)- and \(y\)- intercepts of the graph of \(g\). Find the intervals on which the function is increasing, the intervals on which it is decreasing and the local extrema. Find all of the asymptotes of the graph of \(g\) and any holes in the graph, if they exist. Be sure to show all of your work including any polynomial or synthetic division. Sketch the graph of \(g\), using more than one picture if necessary to show all of the important features of the graph.

    Example 4.2.4 showed us that the six-step procedure cannot tell us everything of importance about the graph of a rational function. Without Calculus, we need to use our graphing calculators to reveal the hidden mysteries of rational function behavior. Working with your classmates, use a graphing calculator to examine the graphs of the rational functions given in Exercises 24 - 27. Compare and contrast their features. Which features can the six-step process reveal and which features cannot be detected by it?

    1. \(f(x) = \dfrac{1}{x^{2} + 1}\)
    2. \(f(x) = \dfrac{x}{x^{2} + 1}\)
    3. \(f(x) = \dfrac{x^{2}}{x^{2} + 1}\)
    4. \(f(x) = \dfrac{x^{3}}{x^{2} + 1}\)

    Answers

    1. \(f(x) = \dfrac{4}{x + 2}\)
      Domain: \((-\infty, -2) \cup (-2, \infty)\)
      No \(x\)-intercepts
      \(y\)-intercept: \((0, 2)\)
      Vertical asymptote: \(x = -2\)
      As \(x \rightarrow -2^{-}, \; f(x) \rightarrow -\infty\)
      As \(x \rightarrow -2^{+}, \; f(x) \rightarrow \infty\)
      Horizontal asymptote: \(y = 0\)
      As \(x \rightarrow -\infty, \; f(x) \rightarrow 0^{-}\)
      As \(x \rightarrow \infty, \; f(x) \rightarrow 0^{+}\)

      Screen Shot 2022-04-01 at 12.54.43 AM.png

    2. \(f(x) = \dfrac{5x}{6 - 2x}\)
      Domain: \((-\infty, 3) \cup (3, \infty)\)
      \(x\)-intercept: \((0, 0)\)
      \(y\)-intercept: \((0, 0)\)
      Vertical asymptote: \(x = 3\)
      As \(x \rightarrow 3^{-}, \; f(x) \rightarrow \infty\)
      As \(x \rightarrow 3^{+}, \; f(x) \rightarrow -\infty\)
      Horizontal asymptote: \(y = -\frac{5}{2}\)
      As \(x \rightarrow -\infty, \; f(x) \rightarrow -\frac{5}{2}^{+}\)
      As \(x \rightarrow \infty, \; f(x) \rightarrow -\frac{5}{2}^{-}\)

      Screen Shot 2022-04-01 at 12.55.11 AM.png

    3. \(f(x) = \dfrac{1}{x^{2}}\)
      Domain: \((-\infty, 0) \cup (0, \infty)\)
      No \(x\)-intercepts
      No \(y\)-intercepts
      Vertical asymptote: \(x = 0\)
      As \(x \rightarrow 0^{-}, \; f(x) \rightarrow \infty\)
      As \(x \rightarrow 0^{+}, \; f(x) \rightarrow \infty\)
      Horizontal asymptote: \(y = 0\)
      As \(x \rightarrow -\infty, \; f(x) \rightarrow 0^{+}\)
      As \(x \rightarrow \infty, \; f(x) \rightarrow 0^{+}\)

      Screen Shot 2022-04-01 at 12.55.44 AM.png

    4. \(f(x) = \dfrac{1}{x^{2} + x - 12} = \dfrac{1}{(x - 3)(x + 4)}\)
      Domain: \((-\infty, -4) \cup (-4, 3) \cup (3, \infty)\)
      No \(x\)-intercepts
      \(y\)-intercept: \((0, -\frac{1}{12})\)
      Vertical asymptotes: \(x = -4\) and \(x = 3\)
      As \(x \rightarrow -4^{-}, \; f(x) \rightarrow \infty\)
      As \(x \rightarrow -4^{+}, \; f(x) \rightarrow -\infty\)
      As \(x \rightarrow 3^{-}, \; f(x) \rightarrow -\infty\)
      As \(x \rightarrow 3^{+}, \; f(x) \rightarrow \infty\)
      Horizontal asymptote: \(y = 0\)
      As \(x \rightarrow -\infty, \; f(x) \rightarrow 0^{+}\)
      As \(x \rightarrow \infty, \; f(x) \rightarrow 0^{+}\)

      Screen Shot 2022-04-01 at 12.56.19 AM.png

    5. \(f(x) = \dfrac{2x - 1}{-2x^{2} - 5x + 3} = -\dfrac{2x - 1}{(2x - 1)(x + 3)}\)
      Domain: \((-\infty, -3) \cup (-3, \frac{1}{2}) \cup (\frac{1}{2}, \infty)\)
      No \(x\)-intercepts
      \(y\)-intercept: \((0, -\frac{1}{3})\)
      \(f(x) = \dfrac{-1}{x + 3}, \; x \neq \frac{1}{2}\)
      Hole in the graph at \((\frac{1}{2}, -\frac{2}{7})\)
      Vertical asymptote: \(x = -3\)
      As \(x \rightarrow -3^{-}, \; f(x) \rightarrow \infty\)
      As \(x \rightarrow -3^{+}, \; f(x) \rightarrow -\infty\)
      Horizontal asymptote: \(y = 0\)
      As \(x \rightarrow -\infty, \; f(x) \rightarrow 0^{+}\)
      As \(x \rightarrow \infty, \; f(x) \rightarrow 0^{-}\)

      Screen Shot 2022-04-01 at 12.56.49 AM.png

    6. \(f(x) = \dfrac{x}{x^{2} + x - 12} = \dfrac{x}{(x - 3)(x + 4)}\)
      Domain: \((-\infty, -4) \cup (-4, 3) \cup (3, \infty)\)
      \(x\)-intercept: \((0, 0)\)
      \(y\)-intercept: \((0, 0)\)
      Vertical asymptotes: \(x = -4\) and \(x = 3\)
      As \(x \rightarrow -4^{-}, \; f(x) \rightarrow -\infty\)
      As \(x \rightarrow -4^{+}, \; f(x) \rightarrow \infty\)
      As \(x \rightarrow 3^{-}, \; f(x) \rightarrow -\infty\)
      As \(x \rightarrow 3^{+}, \; f(x) \rightarrow \infty\)
      Horizontal asymptote: \(y = 0\)
      As \(x \rightarrow -\infty, \; f(x) \rightarrow 0^{-}\)
      As \(x \rightarrow \infty, \; f(x) \rightarrow 0^{+}\)

      Screen Shot 2022-04-01 at 12.57.30 AM.png

    7. \(f(x) = \dfrac{4x}{x^{2} + 4}\)
      Domain: \((-\infty, \infty)\)
      \(x\)-intercept: \((0,0)\)
      \(y\)-intercept: \((0,0)\)
      No vertical asymptotes
      No holes in the graph
      Horizontal asymptote: \(y = 0\)
      As \(x \rightarrow -\infty, f(x) \rightarrow 0^{-}\)
      As \(x \rightarrow \infty, f(x) \rightarrow 0^{+}\)

      Screen Shot 2022-04-01 at 12.58.02 AM.png

    8. \(f(x) = \dfrac{4x}{x^{2} -4} = \dfrac{4x}{(x + 2)(x - 2)}\)
      Domain: \((-\infty, -2) \cup (-2, 2) \cup (2, \infty)\)
      \(x\)-intercept: \((0,0)\)
      \(y\)-intercept: \((0,0)\)
      Vertical asymptotes: \(x = -2, x = 2\)
      As \(x \rightarrow -2^{-}, f(x) \rightarrow -\infty\)
      As \(x \rightarrow -2^{+}, f(x) \rightarrow \infty\)
      As \(x \rightarrow 2^{-}, f(x) \rightarrow -\infty\)
      As \(x \rightarrow 2^{+}, f(x) \rightarrow \infty\)
      No holes in the graph
      Horizontal asymptote: \(y = 0\)
      As \(x \rightarrow -\infty, f(x) \rightarrow 0^{-}\)
      As \(x \rightarrow \infty, f(x) \rightarrow 0^{+}\)

      Screen Shot 2022-04-01 at 12.58.33 AM.png

    9. \(f(x) = \dfrac{x^2-x-12}{x^{2} +x - 6} = \dfrac{x-4}{x - 2} \, x \neq -3\)
      Domain: \((-\infty, -3) \cup (-3, 2) \cup (2, \infty)\)
      \(x\)-intercept: \((4,0)\)
      \(y\)-intercept: \((0,2)\)
      Vertical asymptote: \(x = 2\)
      As \(x \rightarrow 2^{-}, f(x) \rightarrow \infty\)
      As \(x \rightarrow 2^{+}, f(x) \rightarrow -\infty\)
      Hole at \(\left(-3, \frac{7}{5} \right)\)
      Horizontal asymptote: \(y = 1\)
      As \(x \rightarrow -\infty, f(x) \rightarrow 1^{+}\)
      As \(x \rightarrow \infty, f(x) \rightarrow 1^{-}\)

      Screen Shot 2022-04-01 at 12.59.10 AM.png

    10. \(f(x) = \dfrac{3x^2-5x-2}{x^{2} -9} = \dfrac{(3x+1)(x-2)}{(x + 3)(x - 3)}\)
      Domain: \((-\infty, -3) \cup (-3, 3) \cup (3, \infty)\)
      \(x\)-intercepts: \(\left(-\frac{1}{3}, 0 \right)\), \((2,0)\)
      \(y\)-intercept: \(\left(0, \frac{2}{9} \right)\)
      Vertical asymptotes: \(x = -3, x = 3\)
      As \(x \rightarrow -3^{-}, f(x) \rightarrow \infty\)
      As \(x \rightarrow -3^{+}, f(x) \rightarrow -\infty\)
      As \(x \rightarrow 3^{-}, f(x) \rightarrow -\infty\)
      As \(x \rightarrow 3^{+}, f(x) \rightarrow \infty\)
      No holes in the graph
      Horizontal asymptote: \(y = 3\)
      As \(x \rightarrow -\infty, f(x) \rightarrow 3^{+}\)
      As \(x \rightarrow \infty, f(x) \rightarrow 3^{-}\)

      Screen Shot 2022-04-01 at 12.59.46 AM.png

    11. \(f(x) = \dfrac{x^2-x-6}{x+1} = \dfrac{(x-3)(x+2)}{x+1}\)
      Domain: \((-\infty, -1) \cup (-1, \infty)\)
      \(x\)-intercepts: \((-2,0)\), \((3,0)\)
      \(y\)-intercept: \((0,-6)\)
      Vertical asymptote: \(x = -1\)
      As \(x \rightarrow -1^{-}, f(x) \rightarrow \infty\)
      As \(x \rightarrow -1^{+}, f(x) \rightarrow -\infty\)
      Slant asymptote: \(y = x-2\)
      As \(x \rightarrow -\infty\), the graph is above \(y=x-2\)
      As \(x \rightarrow \infty\), the graph is below \(y=x-2\)

      Screen Shot 2022-04-01 at 1.02.05 AM.png

    12. \(f(x) = \dfrac{x^2-x}{3-x} = \dfrac{x(x-1)}{3-x}\)
      Domain: \((-\infty, 3) \cup (3, \infty)\)
      \(x\)-intercepts: \((0,0)\), \((1,0)\)
      \(y\)-intercept: \((0,0)\)
      Vertical asymptote: \(x = 3\)
      As \(x \rightarrow 3^{-}, f(x) \rightarrow \infty\)
      As \(x \rightarrow 3^{+}, f(x) \rightarrow -\infty\)
      Slant asymptote: \(y = -x-2\)
      As \(x \rightarrow -\infty\), the graph is above \(y=-x-2\)
      As \(x \rightarrow \infty\), the graph is below \(y=-x-2\)

      Screen Shot 2022-04-01 at 1.02.50 AM.png

    13. \(f(x) = \dfrac{x^3+2x^2+x}{x^{2} -x-2} = \dfrac{x(x+1)}{x - 2} \, x \neq -1\)
      Domain: \((-\infty, -1) \cup (-1, 2) \cup (2, \infty)\)
      \(x\)-intercept: \((0,0)\)
      \(y\)-intercept: \((0,0)\)
      Vertical asymptote: \(x = 2\)
      As \(x \rightarrow 2^{-}, f(x) \rightarrow -\infty\)
      As \(x \rightarrow 2^{+}, f(x) \rightarrow \infty\)
      Hole at \((-1,0)\)
      Slant asymptote: \(y = x+3\)
      As \(x \rightarrow -\infty\), the graph is below \(y=x+3\)
      As \(x \rightarrow \infty\), the graph is above \(y=x+3\)

      Screen Shot 2022-04-01 at 1.06.52 AM.png

    14. \(f(x) = \dfrac{-x^{3} + 4x}{x^{2} - 9}\)
      Domain: \((-\infty, -3) \cup (-3, 3) \cup (3, \infty)\)
      \(x\)-intercepts: \((-2, 0), (0, 0), (2, 0)\)
      \(y\)-intercept: \((0, 0)\)
      Vertical asymptotes: \(x = -3, x = 3\)
      As \(x \rightarrow -3^{-}, \; f(x) \rightarrow \infty\)
      As \(x \rightarrow -3^{+}, \; f(x) \rightarrow -\infty\)
      As \(x \rightarrow 3^{-}, \; f(x) \rightarrow \infty\)
      As \(x \rightarrow 3^{+}, \; f(x) \rightarrow -\infty\)
      Slant asymptote: \(y = -x\)
      As \(x \rightarrow -\infty\), the graph is above \(y=-x\)
      As \(x \rightarrow \infty\), the graph is below \(y=-x\)

      Screen Shot 2022-04-01 at 1.07.28 AM.png

    15. \(f(x) = \dfrac{x^3-2x^2+3x}{2x^2+2}\)
      Domain: \((-\infty,\infty)\)
      \(x\)-intercept: \((0,0)\)
      \(y\)-intercept: \((0,0)\)
      Slant asymptote: \(y = \frac{1}{2}x-1\)
      As \(x \rightarrow -\infty\), the graph is below \(y = \frac{1}{2}x-1\)
      As \(x \rightarrow \infty\), the graph is above \(y = \frac{1}{2}x-1\)

      Screen Shot 2022-04-01 at 1.08.05 AM.png

    16. \(f(x) = \dfrac{x^{2} - 2x + 1}{x^{3} + x^{2} - 2x}\)
      Domain: \((-\infty, -2) \cup (-2, 0) \cup (0, 1) \cup (1, \infty)\)
      \(f(x) = \dfrac{x - 1}{x(x + 2)}, \; x \neq 1\)
      No \(x\)-intercepts
      No \(y\)-intercepts
      Vertical asymptotes: \(x = -2\) and \(x = 0\)
      As \(x \rightarrow -2^{-}, \; f(x) \rightarrow -\infty\)
      As \(x \rightarrow -2^{+}, \; f(x) \rightarrow \infty\)
      As \(x \rightarrow 0^{-}, \; f(x) \rightarrow \infty\)
      As \(x \rightarrow 0^{+}, \; f(x) \rightarrow -\infty\)
      Hole in the graph at \((1, 0)\)
      Horizontal asymptote: \(y = 0\)
      As \(x \rightarrow -\infty, \; f(x) \rightarrow 0^{-}\)
      As \(x \rightarrow \infty, \; f(x) \rightarrow 0^{+}\)

      Screen Shot 2022-04-01 at 1.09.12 AM.png

    17. \(f(x) = \dfrac{1}{x - 2}\)
      Shift the graph of \(y = \dfrac{1}{x}\)
      to the right 2 units.

      Screen Shot 2022-04-01 at 1.09.52 AM.png

    18. \(g(x) = 1 - \dfrac{3}{x}\)
      Vertically stretch the graph of \(y = \dfrac{1}{x}\)
      by a factor of 3.
      Reflect the graph of \(y = \dfrac{3}{x}\)
      about the \(x\)-axis.
      Shift the graph of \(y = -\dfrac{3}{x}\)
      up 1 unit.

      Screen Shot 2022-04-01 at 1.10.15 AM.png

    19. \(h(x) = \dfrac{-2x + 1}{x} = -2 + \dfrac{1}{x}\)
      Shift the graph of \(y = \dfrac{1}{x}\)
      down 2 units.

      Screen Shot 2022-04-01 at 1.10.45 AM.png

    20. \(j(x) = \dfrac{3x - 7}{x - 2} = 3 - \dfrac{1}{x - 2}\)
      Shift the graph of \(y = \dfrac{1}{x}\)
      to the right 2 units.
      Reflect the graph of \(y = \dfrac{1}{x - 2}\)
      about the \(x\)-axis.
      Shift the graph of \(y = -\dfrac{1}{x - 2}\)
      up 3 units.

      Screen Shot 2022-04-01 at 1.11.15 AM.png


    4.2E: Exercises is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?