Skip to main content
Mathematics LibreTexts

11.6E: Exercises

  • Page ID
    120678
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Graph the following equations.

    1. \(x^{2}+2 x y+y^{2}-x \sqrt{2}+y \sqrt{2}-6=0\)
    2. \(7 x^{2}-4 x y \sqrt{3}+3 y^{2}-2 x-2 y \sqrt{3}-5=0\)
    3. \(5 x^{2}+6 x y+5 y^{2}-4 \sqrt{2} x+4 \sqrt{2} y=0\)
    4. \(x^{2}+2 \sqrt{3} x y+3 y^{2}+2 \sqrt{3} x-2 y-16=0\)
    5. \(13 x^{2}-34 x y \sqrt{3}+47 y^{2}-64=0\)
    6. \(x^{2}-2 \sqrt{3} x y-y^{2}+8=0\)
    7. \(x^{2}-4 x y+4 y^{2}-2 x \sqrt{5}-y \sqrt{5}=0\)
    8. \(8 x^{2}+12 x y+17 y^{2}-20=0\)

    Graph the following equations.

    1. \(r=\frac{2}{1-\cos (\theta)}\)
    2. \(r=\frac{3}{2+\sin (\theta)}\)
    3. \(r=\frac{3}{2-\cos (\theta)}\)
    4. \(r=\frac{2}{1+\sin (\theta)}\)
    5. \(r=\frac{4}{1+3 \cos (\theta)}\)
    6. \(r=\frac{2}{1-2 \sin (\theta)}\)
    7. \(r=\frac{2}{1+\sin \left(\theta-\frac{\pi}{3}\right)}\)
    8. \(r=\frac{6}{3-\cos \left(\theta+\frac{\pi}{4}\right)}\)

    The matrix \(A(\theta)=\left[\begin{array}{rr} \cos (\theta) & -\sin (\theta) \\ \sin (\theta) & \cos (\theta) \end{array}\right]\) is called a rotation matrix. We’ve seen this matrix most recently in the proof of used in the proof of Theorem 11.9.

    1. Show the matrix from Example 8.3.3 in Section 8.3 is none other than \(A\left(\frac{\pi}{4}\right)\).
    2. Discuss with your classmates how to use \(A(\theta)\) ) to rotate points in the plane.
    3. Using the even / odd identities for cosine and sine, show \(A(\theta)^{-1}=A(-\theta)\). Interpret this geometrically.

    11.6.4 Answers

    1. \(x^{2}+2 x y+y^{2}-x \sqrt{2}+y \sqrt{2}-6=0\) becomes \(\left(x^{\prime}\right)^{2}=-\left(y^{\prime}-3\right)\) after rotating counter-clockwise through \(\theta=\frac{\pi}{4}\).

      Screen Shot 2022-06-02 at 4.40.47 AM.png

    2. \(7 x^{2}-4 x y \sqrt{3}+3 y^{2}-2 x-2 y \sqrt{3}-5=0\) becomes \(\frac{\left(x^{\prime}-2\right)^{2}}{9}+\left(y^{\prime}\right)^{2}=1\) after rotating counter-clockwise through \(\theta=\frac{\pi}{3}\)

      Screen Shot 2022-06-02 at 4.42.50 AM.png

    3. \(5 x^{2}+6 x y+5 y^{2}-4 \sqrt{2} x+4 \sqrt{2} y=0\) becomes \(\left(x^{\prime}\right)^{2}+\frac{\left(y^{\prime}+2\right)^{2}}{4}=1\) after rotating counter-clockwise through \(\theta=\frac{\pi}{4}\).

      Screen Shot 2022-06-02 at 4.44.41 AM.png

    4. \(x^{2}+2 \sqrt{3} x y+3 y^{2}+2 \sqrt{3} x-2 y-16=0\) becomes \(\left(x^{\prime}\right)^{2}=y^{\prime}+4\) after rotating counter-clockwise through \(\theta=\frac{\pi}{3}\)

      Screen Shot 2022-06-02 at 4.50.40 AM.png

    5. \(13 x^{2}-34 x y \sqrt{3}+47 y^{2}-64=0\) becomes \(\left(y^{\prime}\right)^{2}-\frac{\left(x^{\prime}\right)^{2}}{16}=1\) after rotating counter-clockwise through \(\theta=\frac{\pi}{6}\).

      Screen Shot 2022-06-02 at 4.54.15 AM.png

    6. \(x^{2}-2 \sqrt{3} x y-y^{2}+8=0\) becomes \(\frac{\left(x^{\prime}\right)^{2}}{4}-\frac{\left(y^{\prime}\right)^{2}}{4}=1\) after rotating counter-clockwise through \(\theta=\frac{\pi}{3}\)

      Screen Shot 2022-06-02 at 5.00.03 AM.png

    7. \(x^{2}-4 x y+4 y^{2}-2 x \sqrt{5}-y \sqrt{5}=0\) becomes \(\left(y^{\prime}\right)^{2}=x\) after rotating counter-clockwise through \(\theta=\arctan \left(\frac{1}{2}\right)\).

      Screen Shot 2022-06-03 at 4.39.24 PM.png

    8. \(8 x^{2}+12 x y+17 y^{2}-20=0\) becomes \(\left(x^{\prime}\right)^{2}+\frac{\left(y^{\prime}\right)^{2}}{4}=1\) after rotating counter-clockwise through \(\theta=\arctan (2)\)

      Screen Shot 2022-06-03 at 4.41.11 PM.png

    9. \(r=\frac{2}{1-\cos (\theta)}\) is a parabola directrix \(x = −2\), vertex (−1, 0) focus (0, 0), focal diameter 4

      Screen Shot 2022-06-03 at 4.44.52 PM.png

    10. \(r=\frac{3}{2+\sin (\theta)}=\frac{\frac{3}{2}}{1+\frac{1}{2} \sin (\theta)}\) is an ellipse directrix \(y = 3\), vertices (0, 1), (0, −3) center (0, −2) , foci (0, 0), (0, −2) minor axis length \(2 \sqrt{3}\)

      Screen Shot 2022-06-03 at 4.46.10 PM.png

    11. \(r=\frac{3}{2-\cos (\theta)}=\frac{\frac{3}{2}}{1-\frac{1}{2} \cos (\theta)}\) is an ellipse directrix \(x = −3\), vertices (−1, 0), (3, 0) center (1, 0) , foci (0, 0), (2, 0) minor axis length \(2 \sqrt{3}\)

      Screen Shot 2022-06-03 at 4.55.20 PM.png

    12. \(r=\frac{2}{1+\sin (\theta)}\) is a parabola directrix \(y = 2\), vertex (0, 1) focus (0, 0), focal diameter 4

      Screen Shot 2022-06-03 at 5.01.04 PM.png

    13. \(r=\frac{4}{1+3 \cos (\theta)}\) is a hyperbola directrix \(x=\frac{4}{3}\), vertices (1, 0), (2, 0) center \(\left(\frac{3}{2}, 0\right)\), foci (0, 0), (3, 0) conjugate axis length \(2 \sqrt{2}\)

      Screen Shot 2022-06-03 at 5.02.50 PM.png

    14. \(r=\frac{2}{1-2 \sin (\theta)}\) is a hyperbola directrix \(y = −1\), vertices \(\left(0,-\frac{2}{3}\right),(0,-2)\) center \(\left(0,-\frac{4}{3}\right)\), foci \((0,0),\left(0,-\frac{8}{3}\right)\) conjugate axis length \(\frac{2 \sqrt{3}}{3}\)

      Screen Shot 2022-06-03 at 5.29.04 PM.png

    15. \(r=\frac{2}{1+\sin \left(\theta-\frac{\pi}{3}\right)}\) is the parabola \(r=\frac{2}{1+\sin (\theta)}\) rotated through \(\phi=\frac{\pi}{3}\)

      Screen Shot 2022-06-03 at 5.33.08 PM.png

    16. \(r=\frac{6}{3-\cos \left(\theta+\frac{\pi}{4}\right)}\) is the ellipse \(r=\frac{6}{3-\cos (\theta)}=\frac{2}{1-\frac{1}{3} \cos (\theta)}\) rotated through \(\phi=-\frac{\pi}{4}\)

      Screen Shot 2022-06-03 at 5.35.16 PM.png


    11.6E: Exercises is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?