Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

2.1E: Separable Equations (Exercises)

( \newcommand{\kernel}{\mathrm{null}\,}\)

In Exercises 1-12, find all solutions.

1. y=3x2+2x+1y2

2. (sinx)(siny)+(cosy)dydx=0

3. dydx=e2x+5y

4. xy+y2+y=0

5. dydx=yy2

6. ylny+x2y=0

7. (3y3+3ycosy+1)dy+(2x+1)y1+x2dx=0

8. x2yy=(y21)3/2

9. dydx=x2(1+y2)

10. (1+x2)dy+xydx=0

11. y=(x1)(y1)(y2)

12. (y1)2y=2x+3

In Exercises 13-19 solve the initial value problem.

13. dydx=x2+3x+2y2,y(1)=4

14. y+x(y2+y)=0,y(2)=1

15. x2dydx=yxy,y(1)=1

16. (3y2+4y)dy+(2x+cosx)dx=0,y(0)=1

17. y+(y+1)(y1)(y2)x+1=0,y(1)=0

18. y+2x(y+1)=0,y(0)=2

19. dydx=2xy(1+y2),y(0)=1

In Exercises 20-27 solve the initial value problem and give the interval of validity of the solution.

20. (x2+2)dy+4x(y2+2y+1)dx=0,y(1)=1

21. y=2x(y23y+2),y(0)=3

22. y=2x1+2y,y(2)=0

23. dydx=2yy2,y(0)=1

24. x+yy=0,y(3)=4

25. y+x2(y+1)(y2)2=0,y(4)=2

26. (x+1)(x2)dy+ydx=0,y(1)=3

27. dydx=xy,y(4)=3

28. Solve y=(1+y2)(1+x2) explicitly.

29. Solve dydx1x2+1y2=0 explicitly.

30. Solve y=cosxsiny,y(π)=π2 explicitly.

31. Solve dydx=y2y explicitly for the initial condition and give the interval of validity of the solution.

a. y(0)=2

b. y(0)=0

32. Solve dydx=(y1)2 for the initial condition

a. y(0)=0

b. y(0)=1

33. From Theorem 1.2.1, the initial value problem y=3x(y1)1/3,y(0)=9

has a unique solution on an open interval that contains x0=0. Find the solution and determine the largest open interval on which it is unique.

34. From Theorem 1.2.1, the initial value problem y=3x(y1)1/3,y(3)=7

has a unique solution on some open interval that contains x0=3. Find the solution and determine the largest open interval on which it is unique


This page titled 2.1E: Separable Equations (Exercises) is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by William F. Trench via source content that was edited to the style and standards of the LibreTexts platform.

Support Center

How can we help?