2.1E: Separable Equations (Exercises)
( \newcommand{\kernel}{\mathrm{null}\,}\)
In Exercises 1-12, find all solutions.
1. y′=3x2+2x+1y−2
2. (sinx)(siny)+(cosy)dydx=0
3. dydx=e2x+5y
4. xy′+y2+y=0
5. dydx=y−y2
6. y′lny+x2y=0
7. (3y3+3ycosy+1)dy+(2x+1)y1+x2dx=0
8. x2yy′=(y2−1)3/2
9. dydx=x2(1+y2)
10. (1+x2)dy+xydx=0
11. y′=(x−1)(y−1)(y−2)
12. (y−1)2y′=2x+3
In Exercises 13-19 solve the initial value problem.
13. dydx=x2+3x+2y−2,y(1)=4
14. y′+x(y2+y)=0,y(2)=1
15. x2dydx=y−xy,y(−1)=−1
16. (3y2+4y)dy+(2x+cosx)dx=0,y(0)=1
17. y′+(y+1)(y−1)(y−2)x+1=0,y(1)=0
18. y′+2x(y+1)=0,y(0)=2
19. dydx=2xy(1+y2),y(0)=1
In Exercises 20-27 solve the initial value problem and give the interval of validity of the solution.
20. (x2+2)dy+4x(y2+2y+1)dx=0,y(1)=−1
21. y′=−2x(y2−3y+2),y(0)=3
22. y′=2x1+2y,y(2)=0
23. dydx=2y−y2,y(0)=1
24. x+yy′=0,y(3)=−4
25. y′+x2(y+1)(y−2)2=0,y(4)=2
26. (x+1)(x−2)dy+ydx=0,y(1)=−3
27. dydx=−xy,y(4)=−3
28. Solve y′=(1+y2)(1+x2) explicitly.
29. Solve dydx√1−x2+√1−y2=0 explicitly.
30. Solve y′=cosxsiny,y(π)=π2 explicitly.
31. Solve dydx=y2−y explicitly for the initial condition and give the interval of validity of the solution.
a. y(0)=2
b. y(0)=0
32. Solve dydx=(y−1)2 for the initial condition
a. y(0)=0
b. y(0)=1
33. From Theorem 1.2.1, the initial value problem y′=3x(y−1)1/3,y(0)=9
34. From Theorem 1.2.1, the initial value problem y′=3x(y−1)1/3,y(3)=−7