2.6: Double-Angle, Half-Angle, and Reduction Formulas
- Last updated
- Jan 16, 2020
- Save as PDF
- Page ID
- 32551
( \newcommand{\kernel}{\mathrm{null}\,}\)
Learning Objectives
- Use double-angle formulas to find exact values
- Use double-angle formulas to verify identities
- Use reduction formulas to simplify an expression
- Use half-angle formulas to find exact values
Bicycle ramps made for competition (see Figure 2.6.1) must vary in height depending on the skill level of the competitors. For advanced competitors, the angle formed by the ramp and the ground should be θ such that tan θ=53. The angle is divided in half for novices. What is the steepness of the ramp for novices? In this section, we will investigate three additional categories of identities that we can use to answer questions such as this one.

Using Double-Angle Formulas to Find Exact Values
In the previous section, we used addition and subtraction formulas for trigonometric functions. Now, we take another look at those same formulas. The double-angle formulas are a special case of the sum formulas, where α=β. Deriving the double-angle formula for sine begins with the sum formula,
sin(α+β)=sinαcosβ+cosαsinβ
If we let α=β=θ, then we have
sin(θ+θ)=sinθcosθ+cosθsinθsin(2θ)=2sinθcosθ
Deriving the double-angle for cosine gives us three options. First, starting from the sum formula, cos(α+β)=cos α cos β−sin α sin β,and letting α=β=θ, we have
cos(θ+θ)=cosθcosθ−sinθsinθcos(2θ)=cos2θ−sin2θ
Using the Pythagorean properties, we can expand this double-angle formula for cosine and get two more variations. The first variation is:
cos(2θ)=cos2θ−sin2θ=(1−sin2θ)−sin2θ
The second variation is:
cos(2θ)=cos2θ−sin2θ=cos2θ−(1−cos2θ)=2cos2θ−1
Similarly, to derive the double-angle formula for tangent, replacing α=β=θ in the sum formula gives
tan(α+β)=tanα+tanβ1−tanαtanβtan(θ+θ)=tanθ+tanθ1−tanθtanθtan(2θ)=2tanθ1−tan2θ
DOUBLE-ANGLE FORMULAS
The double-angle formulas are summarized as follows:
sin(2θ)=2sinθcosθcos(2θ)=cos2θ−sin2θ=1−2sin2θ=2cos2θ−1tan(2θ)=2tanθ1−tan2θ
How to: Given the tangent of an angle and the quadrant in which it is located, use the double-angle formulas to find the exact value
- Draw a triangle to reflect the given information.
- Determine the correct double-angle formula.
- Substitute values into the formula based on the triangle.
- Simplify.
Example 2.6.1: Using a Double-Angle Formula to Find the Exact Value Involving Tangent
Given that tan θ=−34 and θ is in quadrant II, find the following:
- sin(2θ)
- cos(2θ)
- tan(2θ)
Solution
If we draw a triangle to reflect the information given, we can find the values needed to solve the problems on the image. We are given tan θ=−34,such that θ is in quadrant II. The tangent of an angle is equal to the opposite side over the adjacent side, and because θ is in the second quadrant, the adjacent side is on the x-axis and is negative. Use the Pythagorean Theorem to find the length of the hypotenuse:
(−4)2+(3)2=c216+9=c225=c2c=5
Now we can draw a triangle similar to the one shown in Figure 2.6.2.

- Let’s begin by writing the double-angle formula for sine.
sin(2θ)=2 sin θ cos θ
We see that we to need to find sin θ and cos θ. Based on Figure 2.6.2, we see that the hypotenuse equals 5, so sinθ=35, sin θ=35, and cosθ=−45. Substitute these values into the equation, and simplify.
Thus,
sin(2θ)=2(35)(−45)=−2425
- Write the double-angle formula for cosine.
cos(2θ)=cos2θ−sin2θ
Again, substitute the values of the sine and cosine into the equation, and simplify.
cos(2θ)=(−45)2−(35)2=1625−925=725
- Write the double-angle formula for tangent.
tan(2θ)=2 tan θ1−tan2θ
In this formula, we need the tangent, which we were given as tan θ=−34. Substitute this value into the equation, and simplify.
tan(2θ)=2(−34)1−(−34)2=−321−916=−32(167)=−247
Exercise 2.6.1
Given sin α=58,with θ in quadrant I, find cos(2α).
- Answer
-
cos(2α)=732
Example 2.6.2: Using the Double-Angle Formula for Cosine without Exact Values
Use the double-angle formula for cosine to write cos(6x) in terms of cos(3x).
Solution
cos(6x)=cos(3x+3x)=cos3xcos3x−sin3xsin3x=cos23x−sin23x
Analysis
This example illustrates that we can use the double-angle formula without having exact values. It emphasizes that the pattern is what we need to remember and that identities are true for all values in the domain of the trigonometric function.
Using Double-Angle Formulas to Verify Identities
Establishing identities using the double-angle formulas is performed using the same steps we used to derive the sum and difference formulas. Choose the more complicated side of the equation and rewrite it until it matches the other side.
Example 2.6.3: Using the Double-Angle Formulas to Verify an Identity
Verify the following identity using double-angle formulas:
1+sin(2θ)=(sinθ+cosθ)2
Solution
We will work on the right side of the equal sign and rewrite the expression until it matches the left side.
(sinθ+cosθ)2=sin2θ+2sinθcosθ+cos2θ=(sin2θ+cos2θ)+2sinθcosθ=1+2sinθcosθ=1+sin(2θ)
Analysis
This process is not complicated, as long as we recall the perfect square formula from algebra:
(a±b)2=a2±2ab+b2
where a=sin θ and b=cos θ. Part of being successful in mathematics is the ability to recognize patterns. While the terms or symbols may change, the algebra remains consistent.
Exercise 2.6.2
Verify the identity: cos4θ−sin4θ=cos(2θ).
- Answer
-
cos4θ−sin4θ=(cos2θ+sin2θ)(cos2θ−sin2θ)=cos(2θ)
Example 2.6.4: Verifying a Double-Angle Identity for Tangent
Verify the identity: tan(2θ)=2cotθ−tanθ
Solution
In this case, we will work with the left side of the equation and simplify or rewrite until it equals the right side of the equation.
tan(2θ)=2tanθ1−tan2θDouble-angle formula=2tanθ(1tanθ)(1−tan2θ)(1tanθ)Multiply by a term that results in desired numerator=21tanθ−tan2θtanθ=2cotθ−tanθUse reciprocal identity for 1tanθ
Analysis
Here is a case where the more complicated side of the initial equation appeared on the right, but we chose to work the left side. However, if we had chosen the left side to rewrite, we would have been working backwards to arrive at the equivalency. For example, suppose that we wanted to show
2tanθ1−tan2θ=2cotθ−tanθLets work on the right side2cotθ−tanθ=21tanθ−tanθ(tanθtanθ)=2tanθ1tanθ(tanθ)−tanθ(tanθ)=2tanθ1−tan2θ
When using the identities to simplify a trigonometric expression or solve a trigonometric equation, there are usually several paths to a desired result. There is no set rule as to what side should be manipulated. However, we should begin with the guidelines set forth earlier.
Exercise 2.6.3
Verify the identity: cos(2θ)cosθ=cos3θ−cosθsin2θ.
- Answer
-
cos(2θ)cos θ=(cos2θ−sin2θ)cos θ=cos3θ−cos θsin2θ
Use Reduction Formulas to Simplify an Expression
The double-angle formulas can be used to derive the reduction formulas, which are formulas we can use to reduce the power of a given expression involving even powers of sine or cosine. They allow us to rewrite the even powers of sine or cosine in terms of the first power of cosine. These formulas are especially important in higher-level math courses, calculus in particular. Also called the power-reducing formulas, three identities are included and are easily derived from the double-angle formulas.
We can use two of the three double-angle formulas for cosine to derive the reduction formulas for sine and cosine. Let’s begin with cos(2θ)=1−2 sin2θ. Solve for sin2θ:
cos(2θ)=1−2sin2θ2sin2θ=1−cos(2θ)sin2θ=1−cos(2θ)2
Next, we use the formula cos(2θ)=2 cos2θ−1. Solve for cos2θ:
cos(2θ)=2cos2θ−11+cos(2θ)=2cos2θ1+cos(2θ)2=cos2θ
The last reduction formula is derived by writing tangent in terms of sine and cosine:
tan2θ=sin2θcos2θ=1−cos(2θ)21+cos(2θ)2=(1−cos(2θ)2)(21+cos(2θ))=1−cos(2θ)1+cos(2θ)
REDUCTION FORMULAS
The reduction formulas are summarized as follows:
sin2θ=1−cos(2θ)2
cos2θ=1+cos(2θ)2
tan2θ=1−cos(2θ)1+cos(2θ)
Example 2.6.5: Writing an Equivalent Expression Not Containing Powers Greater Than 1
Write an equivalent expression for cos4x that does not involve any powers of sine or cosine greater than 1.
Solution
We will apply the reduction formula for cosine twice.
cos4x=(cos2x)2=(1+cos(2x)2)2Substitute reduction formula=14(1+2cos(2x)+cos2(2x))=14+12cos(2x)+14(1+cos2(2x)2) Substitute reduction formula for cos2x=14+12cos(2x)+18+18cos(4x)=38+12cos(2x)+18cos(4x)
Analysis
The solution is found by using the reduction formula twice, as noted, and the perfect square formula from algebra.
Example 2.6.6: Using the Power-Reducing Formulas to Prove an Identity
Use the power-reducing formulas to prove sin3(2x)=[12 sin(2x)] [1−cos(4x)
Solution
We will work on simplifying the left side of the equation:
sin3(2x)=[sin(2x)][sin2(2x)]=sin(2x)[1−cos(4x)2]Substitute the power-reduction formula.=sin(2x)(12)[1−cos(4x)]=12[sin(2x)][1−cos(4x)]
Analysis
Note that in this example, we substituted 1−cos(4x)2 for sin2(2x). The formula states sin2θ=1−cos(2θ)2
We let θ=2x, so 2θ=4x.
Exercise 2.6.4
Use the power-reducing formulas to prove that 10cos4x=154+5cos(2x)+54cos(4x).
- Answer
-
10cos4x=10(cos2x)2=10[1+cos(2x)2]2Substitute reduction formula for cos2x=104[1+2cos(2x)+cos2(2x)]=104+102cos(2x)+104(1+cos2(2x)2) Substitute reduction formula for cos2x=104+102cos(2x)+108+108cos(4x)=308+5cos(2x)+108cos(4x)=154+5cos(2x)+54cos(4x)
Using Half-Angle Formulas to Find Exact Values
The next set of identities is the set of half-angle formulas, which can be derived from the reduction formulas and we can use when we have an angle that is half the size of a special angle. If we replace θ with α2,the half-angle formula for sine is found by simplifying the equation and solving for sin(α2). Note that the half-angle formulas are preceded by a ± sign. This does not mean that both the positive and negative expressions are valid. Rather, it depends on the quadrant in which α2 terminates.
The half-angle formula for sine is derived as follows:
sin2θ=1−cos(2θ)2sin2(α2)=1−(cos2⋅α2)2=1−cosα2sin(α2)=±√1−cosα2
To derive the half-angle formula for cosine, we have
cos2θ=1+cos(2θ)2cos2(α2)=1+cos(2⋅α2)2=1+cosα2cos(α2)=±√1+cosα2
For the tangent identity, we have
tan2θ=1−cos(2θ)1+cos(2θ)tan2(α2)=1−cos(2⋅α2)1+cos(2⋅α2)tan(α2)=±√1−cosα1+cosα
HALF-ANGLE FORMULAS
The half-angle formulas are as follows:
sin(α2)=±√1−cosα2cos(α2)=±√1+cosα2tan(α2)=±√1−cosα1+cosα=sinα1+cosα=1−cosαsinα
Example 2.6.7
Using a Half-Angle Formula to Find the Exact Value of a Sine Function. Find \sin(15°) using a half-angle formula.
Solution
Since 15°=\dfrac{30°}{2},we use the half-angle formula for sine (Equation \ref{halfsine}):
\begin{align*} \sin \dfrac{30^{\circ}}{2}&= \sqrt{\dfrac{1-\cos 30^{\circ}}{2}}\\[4pt] &= \sqrt{\dfrac{1-\dfrac{\sqrt{3}}{2}}{2}}\\[4pt] &= \sqrt{\dfrac{\dfrac{2-\sqrt{3}}{2}}{2}}\\[4pt] &= \sqrt{\dfrac{2-\sqrt{3}}{4}}\\[4pt] &= \dfrac{\sqrt{2-\sqrt{3}}}{2} \end{align*}
Remember that we can check the answer with a graphing calculator.
Analysis
Notice that we used only the positive root because \sin(15°) is positive.
Howto: Given the tangent of an angle and the quadrant in which the angle lies, find the exact values of trigonometric functions of half of the angle.
- Draw a triangle to represent the given information.
- Determine the correct half-angle formula.
- Substitute values into the formula based on the triangle.
- Simplify.
Example \PageIndex{8}: Finding Exact Values Using Half-Angle Identities
Given that \tan \alpha=\dfrac{8}{15} and α lies in quadrant III, find the exact value of the following:
- \sin\left(\dfrac{\alpha}{2}\right)
- \cos\left(\dfrac{\alpha}{2}\right)
- \tan\left(\dfrac{\alpha}{2}\right)
Solution
Using the given information, we can draw the triangle shown in Figure \PageIndex{3}. Using the Pythagorean Theorem, we find the hypotenuse to be 17. Therefore, we can calculate \sin \alpha=−\dfrac{8}{17} and \cos \alpha=−\dfrac{15}{17}.

- Before we start, we must remember that if α is in quadrant III, then 180°<\alpha<270°,so \dfrac{180°}{2}<\dfrac{\alpha}{2}<\dfrac{270°}{2}. This means that the terminal side of \dfrac{\alpha}{2} is in quadrant II, since 90°<\dfrac{\alpha}{2}<135°. To find \sin \dfrac{\alpha}{2},we begin by writing the half-angle formula for sine. Then we substitute the value of the cosine we found from the triangle in Figure \PageIndex{3} and simplify. \begin{align*} \sin \dfrac{\alpha}{2}&= \pm \sqrt{\dfrac{1-\cos \alpha}{2}}\\[4pt] &= \pm \sqrt{\dfrac{1-(-\dfrac{15}{17})}{2}}\\[4pt] &= \pm \sqrt{\dfrac{\dfrac{32}{17}}{2}}\\[4pt] &= \pm \sqrt{\dfrac{32}{17}\cdot \dfrac{1}{2}}\\[4pt] &= \pm \sqrt{\dfrac{16}{17}}\\[4pt] &= \pm \dfrac{4}{\sqrt{17}}\\[4pt] &= \dfrac{4\sqrt{17}}{17} \end{align*} We choose the positive value of \sin \dfrac{\alpha}{2} because the angle terminates in quadrant II and sine is positive in quadrant II.
- To find \cos \dfrac{\alpha}{2},we will write the half-angle formula for cosine, substitute the value of the cosine we found from the triangle in Figure \PageIndex{3}, and simplify. \begin{align*} \cos \dfrac{\alpha}{2}&= \pm \sqrt{\dfrac{1+\cos \alpha}{2}}\\[4pt] &= \pm \sqrt{\dfrac{1+\left(-\dfrac{15}{17}\right)}{2}}\\[4pt] &= \pm \sqrt{\dfrac{\dfrac{2}{17}}{2}}\\[4pt] &= \pm \sqrt{\dfrac{2}{17}\cdot \dfrac{1}{2}}\\[4pt] &= \pm \sqrt{\dfrac{1}{17}}\\[4pt] &= -\dfrac{\sqrt{17}}{17} \end{align*} We choose the negative value of \cos \dfrac{\alpha}{2} because the angle is in quadrant II because cosine is negative in quadrant II.
- To find \tan \dfrac{\alpha}{2},we write the half-angle formula for tangent. Again, we substitute the value of the cosine we found from the triangle in Figure \PageIndex{3} and simplify. \begin{align*} \tan \dfrac{\alpha}{2}&= \pm \sqrt{\dfrac{1-\cos \alpha}{1+\cos \alpha}}\\[4pt] &= \pm \sqrt{\dfrac{1-\left(-\dfrac{15}{17}\right)}{1+\left(-\dfrac{15}{17}\right)}}\\[4pt] &= \pm \sqrt{\dfrac{\dfrac{32}{17}}{\dfrac{2}{17}}}\\[4pt] &= \pm \sqrt{\dfrac{32}{2}}\\[4pt] &= -\sqrt{16}\\[4pt] &= -4 \end{align*} We choose the negative value of \tan \dfrac{\alpha}{2} because \dfrac{\alpha}{2} lies in quadrant II, and tangent is negative in quadrant II.
Exercise \PageIndex{5}
Given that \sin \alpha=−\dfrac{4}{5} and \alpha lies in quadrant IV, find the exact value of \cos \left(\dfrac{\alpha}{2}\right).
- Answer
-
-\dfrac{2}{\sqrt{5}}
Example \PageIndex{9}: Finding the Measurement of a Half Angle
Now, we will return to the problem posed at the beginning of the section. A bicycle ramp is constructed for high-level competition with an angle of θ formed by the ramp and the ground. Another ramp is to be constructed half as steep for novice competition. If tan θ=53 for higher-level competition, what is the measurement of the angle for novice competition?
Solution
Since the angle for novice competition measures half the steepness of the angle for the high level competition, and \tan \theta=\dfrac{5}{3} for high competition, we can find \cos \theta from the right triangle and the Pythagorean theorem so that we can use the half-angle identities. See Figure \PageIndex{4}.
\begin{align*} 3^2+5^2&=34\\[4pt] c&=\sqrt{34} \end{align*}

We see that \cos \theta=\dfrac{3}{\sqrt{34}}=\dfrac{3\sqrt{34}}{34}. We can use the half-angle formula for tangent: \tan \dfrac{\theta}{2}=\sqrt{\dfrac{1−\cos \theta}{1+\cos \theta}}. Since \tan \theta is in the first quadrant, so is \tan \dfrac{\theta}{2}.
\begin{align*} \tan \dfrac{\theta}{2}&= \sqrt{\dfrac{1-\dfrac{3\sqrt{34}}{34}}{1+\dfrac{3\sqrt{34}}{34}}}\\[4pt] &= \sqrt{\dfrac{\dfrac{34-3\sqrt{34}}{34}}{\dfrac{34+3\sqrt{34}}{34}}}\\[4pt] &= \sqrt{\dfrac{34-3\sqrt{34}}{34+3\sqrt{34}}}\\[4pt] &\approx 0.57 \end{align*}
We can take the inverse tangent to find the angle: {\tan}^{−1}(0.57)≈29.7°. So the angle of the ramp for novice competition is ≈29.7°.
Media
Access these online resources for additional instruction and practice with double-angle, half-angle, and reduction formulas.
- Double-Angle Identities
- Half-Angle Identities
Key Equations
Double-angle formulas |
\sin(2\theta)=2\sin \theta \cos \theta \cos(2\theta)={\cos}^2 \theta−{\sin}^2 \theta =1−2{\sin}^2 \theta =2{\cos}^2 \theta−1 \tan(2\theta)=\dfrac{2\tan \theta}{1−{\tan}^2 \theta} |
Reduction formulas |
{\sin}^2 \theta=\dfrac{1−\cos(2\theta)}{2} {\cos}^2 \theta=\dfrac{1+\cos(2\theta)}{2} {\tan}^2 \theta=\dfrac{1−\cos(2\theta)}{1+\cos(2\theta)} |
Half-angle formulas |
\sin \dfrac{\alpha}{2}=\pm \sqrt{\dfrac{1−\cos \alpha}{2}} \cos \dfrac{\alpha}{2}=\pm \sqrt{\dfrac{1+\cos \alpha}{2}} \tan \dfrac{\alpha}{2}=\pm \sqrt{\dfrac{1−\cos \alpha}{1+\cos \alpha}} =\dfrac{\sin \alpha}{1+\cos \alpha} =\dfrac{1−\cos \alpha}{\sin \alpha} |
Key Concepts
- Double-angle identities are derived from the sum formulas of the fundamental trigonometric functions: sine, cosine, and tangent. See Example \PageIndex{1}, Example \PageIndex{2}, Example \PageIndex{3}, and Example \PageIndex{4}.
- Reduction formulas are especially useful in calculus, as they allow us to reduce the power of the trigonometric term. See Example \PageIndex{5} and Example \PageIndex{6}.
- Half-angle formulas allow us to find the value of trigonometric functions involving half-angles, whether the original angle is known or not. See Example \PageIndex{7}, Example \PageIndex{8}, and Example \PageIndex{9}.