Skip to main content
Mathematics LibreTexts

8.7: Solving Linear Equations (Exercises)

  • Page ID
    21750
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    8.1 - Solve Equations using the Subtraction and Addition Properties of Equality

    In the following exercises, determine whether the given number is a solution to the equation.

    1. x + 16 = 31, x = 15
    2. w − 8 = 5, w = 3
    3. −9n = 45, n = 54
    4. 4a = 72, a = 18

    In the following exercises, solve the equation using the Subtraction Property of Equality.

    1. x + 7 = 19
    2. y + 2 = −6
    3. a + \(\dfrac{1}{3} = \dfrac{5}{3}\)
    4. n + 3.6 = 5.1

    In the following exercises, solve the equation using the Addition Property of Equality.

    1. u − 7 = 10
    2. x − 9 = −4
    3. c − \(\dfrac{3}{11} = \dfrac{9}{11}\)
    4. p − 4.8 = 14

    In the following exercises, solve the equation.

    1. n − 12 = 32
    2. y + 16 = −9
    3. f + \(\dfrac{2}{3}\) = 4
    4. d − 3.9 = 8.2
    5. y + 8 − 15 = −3
    6. 7x + 10 − 6x + 3 = 5
    7. 6(n − 1) − 5n = −14
    8. 8(3p + 5) − 23(p − 1) = 35

    In the following exercises, translate each English sentence into an algebraic equation and then solve it.

    1. The sum of −6 and m is 25.
    2. Four less than n is 13.

    In the following exercises, translate into an algebraic equation and solve.

    1. Rochelle’s daughter is 11 years old. Her son is 3 years younger. How old is her son?
    2. Tan weighs 146 pounds. Minh weighs 15 pounds more than Tan. How much does Minh weigh?
    3. Peter paid $9.75 to go to the movies, which was $46.25 less than he paid to go to a concert. How much did he pay for the concert?
    4. Elissa earned $152.84 this week, which was $21.65 more than she earned last week. How much did she earn last week?

    8.2 - Solve Equations using the Division and Multiplication Properties of Equality

    In the following exercises, solve each equation using the Division Property of Equality.

    1. 8x = 72
    2. 13a = −65
    3. 0.25p = 5.25
    4. −y = 4

    In the following exercises, solve each equation using the Multiplication Property of Equality.

    1. \(\dfrac{n}{6}\) = 18
    2. y −10 = 30
    3. 36 = \(\dfrac{3}{4}\)x
    4. \(\dfrac{5}{8} u = \dfrac{15}{16}\)

    In the following exercises, solve each equation.

    1. −18m = −72
    2. \(\dfrac{c}{9}\) = 36
    3. 0.45x = 6.75
    4. \(\dfrac{11}{12} = \dfrac{2}{3} y\)
    5. 5r − 3r + 9r = 35 − 2
    6. 24x + 8x − 11x = −7−14

    8.3 - Solve Equations with Variables and Constants on Both Sides

    In the following exercises, solve the equations with constants on both sides.

    1. 8p + 7 = 47
    2. 10w − 5 = 65
    3. 3x + 19 = −47
    4. 32 = −4 − 9n

    In the following exercises, solve the equations with variables on both sides.

    1. 7y = 6y − 13
    2. 5a + 21 = 2a
    3. k = −6k − 35
    4. 4x − \(\dfrac{3}{8}\) = 3x

    In the following exercises, solve the equations with constants and variables on both sides.

    1. 12x − 9 = 3x + 45
    2. 5n − 20 = −7n − 80
    3. 4u + 16 = −19 − u
    4. \(\dfrac{5}{8} c\) − 4 = \(\dfrac{3}{8} c\) + 4

    In the following exercises, solve each linear equation using the general strategy.

    1. 6(x + 6) = 24
    2. 9(2p − 5) = 72
    3. −(s + 4) = 18
    4. 8 + 3(n − 9) = 17
    5. 23 − 3(y − 7) = 8
    6. \(\dfrac{1}{3}\)(6m + 21) = m − 7
    7. 8(r − 2) = 6(r + 10)
    8. 5 + 7(2 − 5x) = 2(9x + 1) − (13x − 57)
    9. 4(3.5y + 0.25) = 365
    10. 0.25(q − 8) = 0.1(q + 7)

    8.4 - Solve Equations with Fraction or Decimal Coefficients

    In the following exercises, solve each equation by clearing the fractions.

    1. \(\dfrac{2}{5} n − \dfrac{1}{10} = \dfrac{7}{10}\)
    2. \(\dfrac{1}{3} x + \dfrac{1}{5} x = 8\)
    3. \(\dfrac{3}{4} a − \dfrac{1}{3} = \dfrac{1}{2} a + \dfrac{5}{6}\)
    4. \(\dfrac{1}{2}\)(k + 3) = \(\dfrac{1}{3}\)(k + 16)

    In the following exercises, solve each equation by clearing the decimals.

    1. 0.8x − 0.3 = 0.7x + 0.2
    2. 0.36u + 2.55 = 0.41u + 6.8
    3. 0.6p − 1.9 = 0.78p + 1.7
    4. 0.10d + 0.05(d − 4) = 2.05

    PRACTICE TEST

    1. Determine whether each number is a solution to the equation. 3x + 5 = 23.
      1. 6
      2. \(\dfrac{23}{5}\)

    In the following exercises, solve each equation.

    1. n − 18 = 31
    2. 9c = 144
    3. 4y − 8 = 16
    4. −8x − 15 + 9x − 1 = −21
    5. −15a = 120
    6. \(\dfrac{2}{3}\)x = 6
    7. x + 3.8 = 8.2
    8. 10y = −5y + 60
    9. 8n + 2 = 6n + 12
    10. 9m − 2 − 4m + m = 42 − 8
    11. −5(2x + 1) = 45
    12. −(d + 9) = 23
    13. \(\dfrac{1}{3}\)(6m + 21) = m − 7
    14. 2(6x + 5) − 8 = −22
    15. 8(3a + 5) − 7(4a − 3) = 20 − 3a
    16. \(\dfrac{1}{4} p + \dfrac{1}{3} = \dfrac{1}{2}\)
    17. 0.1d + 0.25(d + 8) = 4.1
    18. Translate and solve: The difference of twice x and 4 is 16.
    19. Samuel paid $25.82 for gas this week, which was $3.47 less than he paid last week. How much did he pay last week?

    Contributors and Attributions


    This page titled 8.7: Solving Linear Equations (Exercises) is shared under a not declared license and was authored, remixed, and/or curated by OpenStax.

    • Was this article helpful?