Skip to main content
Mathematics LibreTexts

10.12: Polynomials (Summary)

  • Page ID
    21778
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Key Terms

    binomial A polynomial with exactly two terms
    degree of a constant The degree of a constant is 0.
    degree of a polynomial The degree of a polynomial is the highest degree of all its terms.
    degree of a term The degree of a term of a polynomial is the exponent of its variable.
    greatest common factor The greatest common factor (GCF) of two or more expressions is the largest expression that is a factor of all the expressions.
    monomial A term of the form axm, where a is a constant and m is a whole number, is called a monomial.
    negative exponent If n is a positive integer and a ≠ 0, then \(a^{-n} = \dfrac{1}{a^{n}}\).
    polynomial A polynomial is a monomial, or two or more monomials, combined by addition or subtraction.
    scientific notation A number expressed in scientific notation when it is of the form a × 10n, where a ≥ 1 and a < 10, and n is an integer.
    trinomial A trinomial is a polynomial with exactly three terms.
    zero exponent If a is a non-zero number, then a0 = 1. Any nonzero number raised to the zero power is 1.

    Key Concepts

    10.2 - Use Multiplication Properties of Exponents

    • Exponential Notation

    On the left side, a raised to the m is shown. The m is labeled in blue as an exponent. The a is labeled in red as the base. On the right, it says a to the m means multiply m factors of a. Below this, it says a to the m equals a times a times a times a, with m factors written below in blue.

    This is read a to the mth power.

    • Product Property of Exponents
      • If a is a real number and m, n are counting numbers, then am • an = am + n
      • To multiply with like bases, add the exponents.
    • Power Property for Exponents
      • If a is a real number and m, n are counting numbers, then (am)n = am • n
    • Product to a Power Property for Exponents
      • If a and b are real numbers and m is a whole number, then (ab)m = ambm

    10.3 - Multiply Polynomials

    • Use the FOIL method for multiplying two binomials.

    Step 1. Multiply the First terms.

    Parentheses a plus b times parentheses c plus d is shown. Above a is first, above b is last, above c is first, above d is last. There is a brace connecting a and d that says outer. There is a brace connecting b and c that says inner.

    Step 2. Multiply the Outer terms.
    Step 3. Multiply the Inner terms.
    Step 4. Multiply the Last terms.
    Step 5. Combine like terms, when possible.
    • Multiplying Two Binomials: To multiply binomials, use the:
      • Distributive Property
      • FOIL Method
      • Vertical Method
    • Multiplying a Trinomial by a Binomial: To multiply a trinomial by a binomial, use the:
      • Distributive Property
      • Vertical Method

    10.4 - Divide Monomials

    • Equivalent Fractions Property
      • If a, b, c are whole numbers where b ≠ 0, c ≠ 0, then$$\dfrac{a}{b} = \dfrac{a \cdot c}{b \cdot c} \quad and \quad \dfrac{a \cdot c}{b \cdot c} = \dfrac{a}{b}$$
    • Zero Exponent
      • If a is a non-zero number, then a0 = 1.
      • Any nonzero number raised to the zero power is 1.
    • Quotient Property for Exponents
      • If a is a real number, a ≠ 0, and m, n are whole numbers, then$$\dfrac{a^{m}}{a^{n}} = a^{m-n},\; m>n \quad and \quad \dfrac{a^{m}}{a^{n}} = \dfrac{1}{a^{n-m}},\; n>m$$
    • Quotient to a Power Property for Exponents
      • If a and b are real numbers, b ≠ 0, and m is a counting number, then$$\left(\dfrac{a}{b}\right)^{m} = \dfrac{a^{m}}{b^{m}}$$
      • To raise a fraction to a power, raise the numerator and denominator to that power.

    10.5 - Integer Exponents and Scientific Notation

    • Summary of Exponent Properties
      • If a, b are real numbers and m, n are integers, then
    Product Property am • an = am + n
    Power Property (am)n = am • n
    Product to a Power Property (ab)m = ambm
    Quotient Property \(\dfrac{a^{m}}{a^{n}}\) = am − n, a ≠ 0, m > n
      \(\dfrac{a^{m}}{a^{n}} = \dfrac{1}{a^{n-m}}\), a ≠ 0, n > m
    Zero Exponent Property a0 = 1, a ≠ 0
    Quotient to a Power Property \(\left(\dfrac{a}{b}\right)^{m} = \dfrac{a^{m}}{b^{m}}\), b ≠ 0
    Definition of a Negative Exponent \(a^{-n} = \dfrac{1}{a^{n}}\)
    • Convert from Decimal Notation to Scientific Notation: To convert a decimal to scientific notation:
      1. Move the decimal point so that the first factor is greater than or equal to 1 but less than 10.
      2. Count the number of decimal places, n, that the decimal point was moved. Write the number as a product with a power of 10.
        • If the original number is greater than 1, the power of 10 will be 10n.
        • If the original number is between 0 and 1, the power of 10 will be 10n.
      3. Check.
    • Convert Scientific Notation to Decimal Form: To convert scientific notation to decimal form:
      1. Determine the exponent, n, on the factor 10.
      2. Move the decimal n places, adding zeros if needed.
        • If the exponent is positive, move the decimal point n places to the right.
        • If the exponent is negative, move the decimal point |n| places to the left.
      3. Check.

    10.6 - Introduction to Factoring Polynomials

    • Find the greatest common factor.
      1. Factor each coefficient into primes. Write all variables with exponents in expanded form.
      2. List all factors—matching common factors in a column. In each column, circle the common factors.
      3. Bring down the common factors that all expressions share.
      4. Multiply the factors.
    • Distributive Property
      • If a , b , c are real numbers, then a(b + c) = ab + ac and ab + ac = a(b + c).
    • Factor the greatest common factor from a polynomial.
      1. Find the GCF of all the terms of the polynomial.
      2. Rewrite each term as a product using the GCF.
      3. Use the Distributive Property ‘in reverse’ to factor the expression.
      4. Check by multiplying the factors.

    Contributors and Attributions


    This page titled 10.12: Polynomials (Summary) is shared under a not declared license and was authored, remixed, and/or curated by OpenStax.

    • Was this article helpful?