Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

4.9E: Exercises for Section 4.8

( \newcommand{\kernel}{\mathrm{null}\,}\)

In exercises 1 - 6, evaluate the limit.

1) Evaluate the limit limxexx.

2) Evaluate the limit limxexxk.

Answer
limxexxk=

3) Evaluate the limit limxlnxxk.

4) Evaluate the limit limxaxax2a2.

Answer
limxaxax2a2=12a

5. Evaluate the limit limxaxax3a3.

6. Evaluate the limit limxaxaxnan.

Answer
limxaxaxnan=1nan1

In exercises 7 - 11, determine whether you can apply L’Hôpital’s rule directly. Explain why or why not. Then, indicate if there is some way you can alter the limit so you can apply L’Hôpital’s rule.

7) limx0+x2lnx

8) limxx1/x

Answer
Cannot apply directly; use logarithms

9) limx0x2/x

10) limx0x21/x

Answer
Cannot apply directly; rewrite as limx0x3

11) limxexx

In exercises 12 - 40, evaluate the limits with either L’Hôpital’s rule or previously learned methods.

12) limx3x29x3

Answer
limx3x29x3=6

13) limx3x29x+3

14) limx0(1+x)21x

Answer
limx0(1+x)21x=2

15) limxπ/2cosxπ2x

16) limxπxπsinx

Answer
limxπxπsinx=1

17) limx1x1sinx

18) limx0(1+x)n1x

Answer
limx0(1+x)n1x=n

19) limx0(1+x)n1nxx2

20) limx0sinxtanxx3

Answer
limx0sinxtanxx3=12

21) limx01+x1xx

22) limx0exx1x2

Answer
limx0exx1x2=12

23) limx0tanxx

24) limx1x1lnx

Answer
limx1x1lnx=1

25) limx0(x+1)1/x

26) limx1xx3x1

Answer
limx1xx3x1=16

27) limx0+x2x

28) limxxsin(1x)

Answer
limxxsin(1x)=1

29) limx0sinxxx2

30) limx0+xln(x4)

Answer
limx0+xln(x4)=0

31) limx(xex)

32) limxx2ex

Answer
limxx2ex=0

33) limx03x2xx

34) limx01+1/x11/x

Answer
limx01+1/x11/x=1

35) limxπ/4(1tanx)cotx

36) limxxe1/x

Answer
limxxe1/x=

37) limx0x1/cosx

38) limx0+x1/x

Answer
limx0+x1/x=0

39) limx0(11x)x

40) limx(11x)x

Answer
limx(11x)x=1e

For exercises 41 - 50, use a calculator to graph the function and estimate the value of the limit, then use L’Hôpital’s rule to find the limit directly.

41) [T] limx0ex1x

42) [T] limx0xsin(1x)

Answer
limx0xsin(1x)=0

43) [T] limx1x11cos(πx)

44) [T] limx1ex11x1

Answer
limx1ex11x1=1

45) [T] limx1(x1)2lnx

46) [T] limxπ1+cosxsinx

Answer
limxπ1+cosxsinx=0

47) [T] limx0(cscx1x)

48) [T] limx0+tan(xx)

Answer
limx0+tan(xx)=tan1

49) [T] limx0+lnxsinx

50) [T] limx0exexx

Answer
limx0exexx=2

4.9E: Exercises for Section 4.8 is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

Support Center

How can we help?