Loading [MathJax]/extensions/TeX/newcommand.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

2.7: Chapter 2 Review Exercises

\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } 

\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}

\newcommand{\id}{\mathrm{id}} \newcommand{\Span}{\mathrm{span}}

( \newcommand{\kernel}{\mathrm{null}\,}\) \newcommand{\range}{\mathrm{range}\,}

\newcommand{\RealPart}{\mathrm{Re}} \newcommand{\ImaginaryPart}{\mathrm{Im}}

\newcommand{\Argument}{\mathrm{Arg}} \newcommand{\norm}[1]{\| #1 \|}

\newcommand{\inner}[2]{\langle #1, #2 \rangle}

\newcommand{\Span}{\mathrm{span}}

\newcommand{\id}{\mathrm{id}}

\newcommand{\Span}{\mathrm{span}}

\newcommand{\kernel}{\mathrm{null}\,}

\newcommand{\range}{\mathrm{range}\,}

\newcommand{\RealPart}{\mathrm{Re}}

\newcommand{\ImaginaryPart}{\mathrm{Im}}

\newcommand{\Argument}{\mathrm{Arg}}

\newcommand{\norm}[1]{\| #1 \|}

\newcommand{\inner}[2]{\langle #1, #2 \rangle}

\newcommand{\Span}{\mathrm{span}} \newcommand{\AA}{\unicode[.8,0]{x212B}}

\newcommand{\vectorA}[1]{\vec{#1}}      % arrow

\newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow

\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } 

\newcommand{\vectorC}[1]{\textbf{#1}} 

\newcommand{\vectorD}[1]{\overrightarrow{#1}} 

\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} 

\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}

\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } 

\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}

\newcommand{\avec}{\mathbf a} \newcommand{\bvec}{\mathbf b} \newcommand{\cvec}{\mathbf c} \newcommand{\dvec}{\mathbf d} \newcommand{\dtil}{\widetilde{\mathbf d}} \newcommand{\evec}{\mathbf e} \newcommand{\fvec}{\mathbf f} \newcommand{\nvec}{\mathbf n} \newcommand{\pvec}{\mathbf p} \newcommand{\qvec}{\mathbf q} \newcommand{\svec}{\mathbf s} \newcommand{\tvec}{\mathbf t} \newcommand{\uvec}{\mathbf u} \newcommand{\vvec}{\mathbf v} \newcommand{\wvec}{\mathbf w} \newcommand{\xvec}{\mathbf x} \newcommand{\yvec}{\mathbf y} \newcommand{\zvec}{\mathbf z} \newcommand{\rvec}{\mathbf r} \newcommand{\mvec}{\mathbf m} \newcommand{\zerovec}{\mathbf 0} \newcommand{\onevec}{\mathbf 1} \newcommand{\real}{\mathbb R} \newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]} \newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]} \newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]} \newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]} \newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]} \newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]} \newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]} \newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]} \newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]} \newcommand{\laspan}[1]{\text{Span}\{#1\}} \newcommand{\bcal}{\cal B} \newcommand{\ccal}{\cal C} \newcommand{\scal}{\cal S} \newcommand{\wcal}{\cal W} \newcommand{\ecal}{\cal E} \newcommand{\coords}[2]{\left\{#1\right\}_{#2}} \newcommand{\gray}[1]{\color{gray}{#1}} \newcommand{\lgray}[1]{\color{lightgray}{#1}} \newcommand{\rank}{\operatorname{rank}} \newcommand{\row}{\text{Row}} \newcommand{\col}{\text{Col}} \renewcommand{\row}{\text{Row}} \newcommand{\nul}{\text{Nul}} \newcommand{\var}{\text{Var}} \newcommand{\corr}{\text{corr}} \newcommand{\len}[1]{\left|#1\right|} \newcommand{\bbar}{\overline{\bvec}} \newcommand{\bhat}{\widehat{\bvec}} \newcommand{\bperp}{\bvec^\perp} \newcommand{\xhat}{\widehat{\xvec}} \newcommand{\vhat}{\widehat{\vvec}} \newcommand{\uhat}{\widehat{\uvec}} \newcommand{\what}{\widehat{\wvec}} \newcommand{\Sighat}{\widehat{\Sigma}} \newcommand{\lt}{<} \newcommand{\gt}{>} \newcommand{\amp}{&} \definecolor{fillinmathshade}{gray}{0.9}

True or False. In exercises 1 - 4, justify your answer with a proof or a counterexample.

1) A function has to be continuous at x=a if the \displaystyle \lim_{x→a}f(x) exists.

2) You can use the quotient rule to evaluate \displaystyle \lim_{x→0}\frac{\sin x}{x}.

Answer
False, since we cannot have \displaystyle \lim_{x→0}x=0 in the denominator.

3) If there is a vertical asymptote at x=a for the function f(x), then f is undefined at the point x=a.

4) If \displaystyle \lim_{x→a}f(x) does not exist, then f is undefined at the point x=a.

Answer
False. A jump discontinuity is possible.

5) Using the graph, find each limit or explain why the limit does not exist.

a. \displaystyle \lim_{x→−1}f(x)

b. \displaystyle \lim_{x→1}f(x)

c. \displaystyle \lim_{x→0^+}f(x)

d. \displaystyle \lim_{x→2}f(x)

A graph of a piecewise function with several segments. The first is a decreasing concave up curve existing for x < -1. It ends at an open circle at (-1, 1). The second is an increasing linear function starting at (-1, -2) and ending at (0,-1). The third is an increasing concave down curve existing from an open circle at (0,0) to an open circle at (1,1). The fourth is a closed circle at (1,-1). The fifth is a line with no slope existing for x > 1, starting at the open circle at (1,1).

In exercises 6 - 15, evaluate the limit algebraically or explain why the limit does not exist.

6) \displaystyle \lim_{x→2}\frac{2x^2−3x−2}{x−2}

Answer
5

7) \displaystyle \lim_{x→0}3x^2−2x+4

8) \displaystyle \lim_{x→3}\frac{x^3−2x^2−1}{3x−2}

Answer
8/7

9) \displaystyle \lim_{x→π/2}\frac{\cot x}{\cos x}

10) \displaystyle \lim_{x→−5}\frac{x^2+25}{x+5}

Answer
DNE

11) \displaystyle \lim_{x→2}\frac{3x^2−2x−8}{x^2−4}

12) \displaystyle \lim_{x→1}\frac{x^2−1}{x^3−1}

Answer
2/3

13) \displaystyle \lim_{x→1}\frac{x^2−1}{\sqrt{x}−1}

14) \displaystyle \lim_{x→4}\frac{4−x}{\sqrt{x}−2}

Answer
−4

15) \displaystyle \lim_{x→4}\frac{1}{\sqrt{x}−2}

In exercises 16 - 17, use the squeeze theorem to prove the limit.

16) \displaystyle \lim_{x→0}x^2\cos(2πx)=0

Answer
Since −1≤\cos(2πx)≤1, then −x^2≤x^2\cos(2πx)≤x^2. Since \displaystyle \lim_{x→0}x^2=0=\lim_{x→0}−x^2, it follows that \displaystyle \lim_{x→0}x^2\cos(2πx)=0.

17) \displaystyle \lim_{x→0}x^3\sin\left(\frac{π}{x}\right)=0

18) Determine the domain such that the function f(x)=\sqrt{x−2}+xe^x is continuous over its domain.

Answer
[2,∞]

In exercises 19 - 20, determine the value of c such that the function remains continuous. Draw your resulting function to ensure it is continuous.

19) f(x)=\begin{cases}x^2+1, & \text{if } x>c\\2^x, & \text{if } x≤c\end{cases}

20) f(x)=\begin{cases}\sqrt{x+1}, & \text{if } x>−1\\x^2+c, & \text{if } x≤−1\end{cases}

In exercises 21 - 22, use the precise definition of limit to prove the limit.

21) \displaystyle \lim_{x→1}\,(8x+16)=24

22) \displaystyle \lim_{x→0}x^3=0

Answer
δ=\sqrt[3]{ε}

23) A ball is thrown into the air and the vertical position is given by x(t)=−4.9t^2+25t+5. Use the Intermediate Value Theorem to show that the ball must land on the ground sometime between 5 sec and 6 sec after the throw.

24) A particle moving along a line has a displacement according to the function x(t)=t^2−2t+4, where x is measured in meters and t is measured in seconds. Find the average velocity over the time period t=[0,2].

Answer
0 m/sec

25) From the previous exercises, estimate the instantaneous velocity at t=2 by checking the average velocity within t=0.01 sec.


2.7: Chapter 2 Review Exercises is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

Support Center

How can we help?