13.9.6E: Exercises
- Last updated
- Aug 13, 2020
- Save as PDF
- Page ID
- 46307
( \newcommand{\kernel}{\mathrm{null}\,}\)
Practice Makes Perfect
Solve Rational Equations
In the following exercises, solve.
Example 13.9.6E.37
1a+25=12
- Answer
-
10
Example 13.9.6E.38
56+3b=13
Example 13.9.6E.39
52−1c=34
- Answer
-
47
Example 13.9.6E.40
63−2d=49
Example 13.9.6E.41
45+14=2v
- Answer
-
4021
Example 13.9.6E.42
37+23=1w
Example 13.9.6E.43
79+1x=23
- Answer
-
−9
Example 13.9.6E.44
38+2y=14
Example 13.9.6E.45
1−2m=8m2
- Answer
-
−2, 4
Example 13.9.6E.46
1+4n=21n2
Example 13.9.6E.47
1+9p=−20p2
- Answer
-
−5, −4
Example 13.9.6E.48
1−7q=−6q2
Example 13.9.6E.49
1r+3=42r
- Answer
-
−6
Example 13.9.6E.50
3t−6=1t
Example 13.9.6E.51
53v−2=74v
- Answer
-
14
Example 13.9.6E.52
82w+1=3w
Example 13.9.6E.53
3x+4+7x−4=8x2−16
- Answer
-
−45
Example 13.9.6E.54
5y−9+1y+9=18y2−81
Example 13.9.6E.55
8z−10+7z+10=5z2−100
- Answer
-
−13
Example 13.9.6E.56
9a+11+6a−11=7a2−121
Example 13.9.6E.57
1q+4−7q−2=1
- Answer
-
no solution
Example 13.9.6E.58
3r+10−4r−4=1
Example 13.9.6E.59
1t+7−5t−5=1
- Answer
-
−5, −1
Example 13.9.6E.60
2s+7−3s−3=1
Example 13.9.6E.61
v−10v2−5v+4=3v−1−6v−4
- Answer
-
no solution
Example 13.9.6E.62
w+8w2−11w+28=5w−7+2w−4
Example 13.9.6E.63
x−10x2+8x+12=3x+2+4x+6
- Answer
-
no solution
Example 13.9.6E.64
y−3y2−4y−5=1y+1+8y−5
Example 13.9.6E.65
z16+z+24z=12z
- Answer
-
−4
Example 13.9.6E.66
a9+a+33a=1a
Example 13.9.6E.67
b+33b+b24=1b
- Answer
-
−8
Example 13.9.6E.68
c+312c+c36=14c
Example 13.9.6E.69
dd+3=18d2−9+4
- Answer
-
2
Example 13.9.6E.70
mm+5=50m2−25+6
Example 13.9.6E.71
nn+2=8n2−4+3
- Answer
-
1
Example 13.9.6E.72
pp+7=98p2−49+8
Example 13.9.6E.73
q3q−9−34q+12=7q2+6q+6324q2−216
- Answer
-
no solution
Example 13.9.6E.74
r3r−15−14r+20=3r2+17r+4012r2−300
Example 13.9.6E.75
s2s+6−25s+5=5s2−3s−710s2+40s+30
- Answer
-
no solution
Example 13.9.6E.76
t6t−12−52t+10=t2−23t+7012t2+36t−120
Solve a Rational Equation for a Specific Variable
In the following exercises, solve.
Example 13.9.6E.77
Cr=2π for r
- Answer
-
r=C2π
Example 13.9.6E.78
Ir=P for r
Example 13.9.6E.79
Vh=lw for h
- Answer
-
h=vlw
Example 13.9.6E.80
2Ab=h for b
Example 13.9.6E.81
v+3w−1=12 for w
- Answer
-
w=2v+7
Example 13.9.6E.82
x+52−y=43 for y
Example 13.9.6E.83
a=b+3c−2 for c
- Answer
-
c=b+3+2aa
Example 13.9.6E.84
m=n2−n for n
Example 13.9.6E.85
1p+2q=4 for p
- Answer
-
p=q4q−2
Example 13.9.6E.86
3s+1t=2 for s
Example 13.9.6E.87
2v+15=12 for w
- Answer
-
w=15v10+v
Example 13.9.6E.88
6x+23=1y for y
Example 13.9.6E.89
m+3n−2=45 for n
- Answer
-
n=5m+23m
Example 13.9.6E.90
Ec=m2 for c
Example 13.9.6E.91
3x−5y=14 for y
- Answer
-
y=20x12−x
Example 13.9.6E.92
RT=W for T
Example 13.9.6E.93
r=s3−t for t
- Answer
-
t=3r−sr
Example 13.9.6E.94
c=2a+b5 for a
Everyday Math
Example 13.9.6E.95
House Painting Alain can paint a house in 4 days. Spiro would take 7 days to paint the same house. Solve the equation 14+17=1t for t to find the number of days it would take them to paint the house if they worked together.
- Answer
-
2611 days
Example 13.9.6E.96
Boating Ari can drive his boat 18 miles with the current in the same amount of time it takes to drive 10 miles against the current. If the speed of the boat is 7 knots, solve the equation 187+c=107−c for c to find the speed of the current.
Writing Exercises
Example 13.9.6E.97
Why is there no solution to the equation 3x−2=5x−2
- Answer
-
Answers will vary.
Example 13.9.6E.98
Pete thinks the equation yy+6=72y2−36+4 has two solutions, y=−6 and y=4. Explain why Pete is wrong.
Self Check
ⓐ After completing the exercises, use this checklist to evaluate your mastery of the objectives of this section.

ⓑ After reviewing this checklist, what will you do to become confident for all objectives?