17.6E: Exercises
( \newcommand{\kernel}{\mathrm{null}\,}\)
selected template will load here
This action is not available.
( \newcommand{\kernel}{\mathrm{null}\,}\)
In the following exercises, simplify.
1. a. √128√72 b. 3√1283√54
2. a. √48√75 b. 3√813√24
3. a.√200m5√98m b. 3√54y23√2y5
4. a. √108n7√243n3 b. 3√54y3√16y4
5. a. √75r3√108r7 b. 3√24x73√81x4
6. a. √196q√484q5 b. 3√16m43√54m
7. a. √108p5q2√3p3q6 b. 3√−16a4b−23√2a−2b
8. a. √98rs10√2r3s4 b. 3√−375y4z23√3y−2z4
9. a. √320mn−5√45m−7n3 b. 3√16x4y−23√−54x−2y4
10. a. √810c−3d7√1000cd b. 3√24a7b−13√−81a−2b2
11. √56x5y4√2xy3
12. √72a3b6√3ab3
13. 3√48a3b63√3a−1b3
14. 3√162x−3y63√2x3y−2
1. a. 43 b. 43
3. a. 10m27 b. 3y
5. a. 56r2 b. 2x3
7. a. 6pq2 b. −2a2b
9. a. 8m43n4 b. −2x23y2
11. 4x4√7y
13. 2ab3√2a
In the following exercises, rationalize the denominator.
15. a. 10√6 b. √427 c. 10√5x
16. a. 8√3 b. √740 c. 8√2y
17. a. 6√7 b. √845 c. 12√3p
18. a. 4√5 b. √2780 c. 18√6q
19. a. 13√5 b. 3√524 c. 43√36a
20. a. 13√3 b. 3√532 c. 73√49b
21. a. 13√11 b. 3√754 c. 33√3x2
22. a. 13√13 b. 3√3128 c. 33√6y2
23. a. 14√7 b. 4√532 c. 44√4x2
24. a. 14√4 b. 4√932 c. 64√9x3
25. a. 14√9 b. 4√25128 c. 64√27a
26. a. 14√8 b. 4√27128 c. 164√64b2
15. a. 5√63 b. 2√39 c. 2√5xx
17. a. 6√77 b. 2√1015 c. 4√3pp
19. a. 3√255 b. 3√456 c. 23√6a23a
21. a. 3√12111 b. 3√286 c. 3√9xx
23. a. 4√3437 b. 4√404 c. 24√4x2x
25. a. 4√93 b. 4√504 c. 24√3a2a
In the following exercises, simplify.
27. 81−√5
28. 72−√6
29. 63−√7
30. 54−√11
31. √3√m−√5
32. √5√n−√7
33. √2√x−√6
34. √7√y+√3
35. √r+√5√r−√5
36. √s−√6√s+√6
37. √x+√8√x−√8
38. √m−√3√m+√3
27. −2(1+√5)
29. 3(3+√7)
31. √3(√m+√5)m−5
33. √2(√x+√6)x−6
35. (√r+√5)2r−5
37. (√x+2√2)2x−8
1. Answers will vary
3. Answers will vary
a. After completing the exercises, use this checklist to evaluate your mastery of the objectives of this section.
b. After looking at the checklist, do you think you are well-prepared for the next section? Why or why not?