Loading [MathJax]/jax/output/HTML-CSS/jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

17.6E: Exercises

( \newcommand{\kernel}{\mathrm{null}\,}\)

Practice Makes Perfect

Exercise SET A: divide square roots

In the following exercises, simplify.

1. a. 12872 b. 3128354

2. a. 4875 b. 381324

3. a.200m598m b. 354y232y5

4. a. 108n7243n3 b. 354y316y4

5. a. 75r3108r7 b. 324x7381x4

6. a. 196q484q5 b. 316m4354m

7. a. 108p5q23p3q6 b. 316a4b232a2b

8. a. 98rs102r3s4 b. 3375y4z233y2z4

9. a. 320mn545m7n3 b. 316x4y2354x2y4

10. a. 810c3d71000cd b. 324a7b1381a2b2

11. 56x5y42xy3

12. 72a3b63ab3

13. 348a3b633a1b3

14. 3162x3y632x3y2

Answer

1. a. 43 b. 43

3. a. 10m27 b. 3y

5. a. 56r2 b. 2x3

7. a. 6pq2 b. 2a2b

9. a. 8m43n4 b. 2x23y2

11. 4x47y

13. 2ab32a

Exercise SET B: Rationalize a One Term Denominator

In the following exercises, rationalize the denominator.

15. a. 106 b. 427 c. 105x

16. a. 83 b. 740 c. 82y

17. a. 67 b. 845 c. 123p

18. a. 45 b. 2780 c. 186q

19. a. 135 b. 3524 c. 4336a

20. a. 133 b. 3532 c. 7349b

21. a. 1311 b. 3754 c. 333x2

22. a. 1313 b. 33128 c. 336y2

23. a. 147 b. 4532 c. 444x2

24. a. 144 b. 4932 c. 649x3

25. a. 149 b. 425128 c. 6427a

26. a. 148 b. 427128 c. 16464b2

Answer

15. a. 563 b. 239 c. 25xx

17. a. 677 b. 21015 c. 43pp

19. a. 3255 b. 3456 c. 236a23a

21. a. 312111 b. 3286 c. 39xx

23. a. 43437 b. 4404 c. 244x2x

25. a. 493 b. 4504 c. 243a2a

Exercise SET C: Rationalize a Two Term Denominator

In the following exercises, simplify.

27. 815

28. 726

29. 637

30. 5411

31. 3m5

32. 5n7

33. 2x6

34. 7y+3

35. r+5r5

36. s6s+6

37. x+8x8

38. m3m+3

Answer

27. 2(1+5)

29. 3(3+7)

31. 3(m+5)m5

33. 2(x+6)x6

35. (r+5)2r5

37. (x+22)2x8

Exercise SET D: writing exercises
    1. Simplify 273 and explain all your steps.
    2. Simplify 275 and explain all your steps.
    3. Why are the two methods of simplifying square roots different?
  1. Explain what is meant by the word rationalize in the phrase, "rationalize a denominator."
  2. Explain why multiplying 2x3 by its conjugate results in an epxression with no radicals.
  3. Explain why multiplying 73x by 3x3x does not rationalize the denominator.
Answer

1. Answers will vary

3. Answers will vary

Self Check

a. After completing the exercises, use this checklist to evaluate your mastery of the objectives of this section.

This table has 4 rows and 4 columns. The first row is a header row and it labels each column. The first column header is “I can…”, the second is “Confidently”, the third is “With some help”, and the fourth is “No, I don’t get it”. Under the first column are the phrases “divide radical expressions.”, “rationalize a one term denominator”, and “rationalize a two term denominator”. The other columns are left blank so that the learner may indicate their mastery level for each topic.
Figure 8.5.63

b. After looking at the checklist, do you think you are well-prepared for the next section? Why or why not?


This page titled 17.6E: Exercises is shared under a CC BY license and was authored, remixed, and/or curated by OpenStax.

Support Center

How can we help?