3.2e: Circle Exercises.
- Page ID
- 55753
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)A: Write the Equation for a Circle from a Description
Exercise \(\PageIndex{A}\)
1. Write an equation of the circle centered at (8 , -10) with radius 8.
2. Write an equation of the circle centered at (-9, 9) with radius 16.
- Answer
-
1. \( (x-8)^2+(y+10)^2 = 64 \)
B: Construct an equation for a circle from a graph
Exercise \(\PageIndex{B}\)
\( \bigstar \) State the center and radius of the circle graphed below and construct the equation for it.
3. |
4. |
5. |
6. |
- Answers to Odd Numbered Problems:
-
3. Center \( (2, 1) \), radius \( r = 2 \), \( (x - 2)^{2} + (y + 1)^{2} = 4 \) 5. Center \( (-1, 3) \), radius \( r = 5 \), \( (x+1)^{2} + (y -3)^{2} = 25 \)
C: Graph a circle given an equation
Exercise \(\PageIndex{C}\)
\( \bigstar \) State the center and radius of the circle described by the equation and graph it.
|
|
- Answers to Odd Numbered Problems:
-
11. Center \( (2, -3) \), radius \( r = 3 \)
13. Center \( (2, -5) \), radius \( r = 2 \)
15. Center \( (-9, 0) \), radius \( r = 5 \)
17. Center \( (-4,5) \), radius \( r = \sqrt{42} \)
19. Center \( \left( -\frac{5}{2}, \frac{1}{2}\right) \), radius \(r = \frac{\sqrt{30}}{2} \)
21. Center \( \left(-\frac{1}{2}, \frac{3}{5}\right) \), radius \(r = \frac{\sqrt{161}}{10} \)
23. This is not a circle.
D: Graph a circle given an equation in non-standard form
Exercise \(\PageIndex{D}\)
\( \bigstar \) Complete the square and write the equation in standard form. Then give the center and radius of each circle and graph it.
|
|
- Answers to Odd Numbered Problems:
-
31. \( (x +1)^{2} + (y + 3)^{2} = 16 \), Center: \((-1, -3)\), Radius: \(4\)
33. \( (x - 3)^{2} + (y + 9)^{2} = 100 \), Center: \((-3, 9)\), R: \(10\)
35. \( (x+5)^{2} + (y -6)^{2} = 74 \), Center: \((-5, 6)\), R: \(\sqrt{74}\)
37. \( (x - 7)^{2} + (y -10)^{2} = 169 \), Center: \((7, 10)\), Radius: \(13\)
39. \( (x + 0.5)^{2} + (y + 7)^{2} = 36 \), Center: \((-\tfrac{1}{2}, -7)\), Radius: \(6\)
41. \( x^{2} + (y + 1)^{2} = 4 \), Center: \((0, -1)\), Radius = \(2\)
E: Match equations with graphs of ellipses
Exercise \(\PageIndex{E}\)
\( \bigstar \) Match each graph with one of the equations A–D.
A. \(\dfrac{x^2}{4} + \dfrac{y^2}{9} = 1\) | B. \(\dfrac{x^2}{9} + \dfrac{y^2}{4} = 1\) | C. \(\dfrac{x^2}{9} + {y^2} = 1\) | D. \({x^2} + \dfrac{y^2}{9} = 1\) |
41. | 42. | 43. | 44. |
\( \bigstar \) Match each graph to equations A-H.
A. \(\dfrac{\left( {x - 2} \right)^2}{4} + \dfrac{{(y - 1)}^2}{9} = 1\) B. \(\dfrac{\left( {x - 2} \right)^2}{4} + \dfrac{{(y - 1)}^2}{16} = 1\) |
C. \(\dfrac{\left( {x - 2} \right)^2}{16} + \dfrac{{(y - 1)}^2}{4} = 1\) D. \(\dfrac{\left( {x - 2} \right)^2}{9} + \dfrac{{(y - 1)}^2}{4} = 1\) |
E. \(\dfrac{\left( {x + 2} \right)^2}{4} + \dfrac{{(y + 1)}^2}{9} = 1\) F. \(\dfrac{\left( {x + 2} \right)^2}{4} + \dfrac{{(y + 1)}^2}{16} = 1\) |
G. \(\dfrac{\left( {x + 2} \right)^2}{16} + \dfrac{{(y + 1)}^2}{4} = 1\) H. \(\dfrac{\left( {x + 2} \right)^2}{9} + \dfrac{{(y + 1)}^2}{4} = 1\) |
45. | 46. | 47. | 49. |
49. | 50. | 51. | 52. |
- Answers to Odd Numbered Problems:
-
41. D 43. B 45. B 47. C 49. F 51. G
F: Write the equation for an ellipse given a graph
Exercise \(\PageIndex{F}\)
\( \bigstar \) Write an equation for the graph.
53. | 54. | 55. | 56. |
\( \bigstar \) Find the standard form of the equation for an ellipse satisfying the given conditions.
57. Center (0,0), horizontal radius = \(32 \), vertical radius = \(7 \) 58. Center (0,0), horizontal radius = \(9 \), vertical radius = \(18 \) 59. Center (0,0), horizontal radius = \( 2\), vertical radius = \( 3\) |
60. Center (0,0), horizontal radius = \(4 \), vertical radius = \(4 \) 61. Center (-4, 3), horizontal radius = \(4 \), vertical radius = \(5\) 62. Center (1, -2), horizontal radius = \(7 \), vertical radius = \(8 \) |
- Answers to Odd Numbered Problems:
-
53. \(\dfrac{x^2}{16} + \dfrac{y^2}{4} = 1\)
55. \((x - 3)^2 + \dfrac{(y + 1)^2}{16} = 1\) 57. \(\dfrac{x^2}{1024} + \dfrac{y^2}{49} = 1\) 59. \(\dfrac{x^2}{4} + \dfrac{y^2}{9} = 1\) 61. \(\dfrac{(x + 4)^2}{16} + \dfrac{(y - 3)^2}{25} = 1\)
G: Graph an ellipse given an equation
Exercise \(\PageIndex{G}\): Graph an Ellipse from an Equation in Standard Form
\( \bigstar \) Find the center, and horizontal and vertical radii. Sketch the graph.
63. \(\dfrac{x^2}{4} + \dfrac{y^2}{25} = 1\) 64. \(\dfrac{x^2}{16} + \dfrac{y^2}{4} = 1\) |
65. \(\dfrac{x^2}{4} + y^2 = 1\) 66. \(x^2 + \dfrac{y^2}{25} = 1\) |
67. \(x^2+ 25y^2 = 25\) 68. \(16x^2 + y^2 = 16\) 69. \(16x^2 + 9y^2 = 144\) |
70. \(16x^2 + 25y^2 = 400\) 71. \(9x^2 + y^2 = 18\) 72. \(x^2 + 4y^2 = 12\) |
- Answers to Odd Numbered Problems:
-
63. Center \((0, 0)\),
Horiz. radius \(a = 2\),
Vert. radius \(b = 5\)65. Center \((0, 0)\),
Horiz. radius \(a = 2\),
Vert. radius \(b = 1\)67. Center \((0, 0)\),
Horiz. radius \(a = 5\),
Vert. radius \(b = 1\)69. Center \((0, 0)\),
Horiz. radius \(a = 3\),
Vert. radius \(b = 4\)71. Center \((0, 0)\),
Horiz. radius \(a = \sqrt{2}\),
Vert. radius \(b =3\sqrt{2} \)
H: Graph an ellipse given an equation in non-standard form
Exercise \(\PageIndex{H}\)
\( \bigstar \) Find the center, and horizontal and vertical radii. Sketch the graph.
73. \(\dfrac{(x - 1)^2}{25} + \dfrac{(y + 2)^2}{4} = 1\)
74. \(\dfrac{(x + 5)^2}{16} + \dfrac{(y - 3)^2}{36} = 1\) |
75. \((x + 2)^2 + \dfrac{(y - 3)^2}{25} = 1\)
76. \(\dfrac{(x - 1)^2}{25} + (y - 6)^2 = 1\) |
77. \(4x^2 + 8x + 4 + y^2 = 16\) 78. \(x^2 + 4y^2 + 16y + 16 = 36\) 79. \(x^2 + 2x + 4y^2 + 16y = - 1\) 80. \(4x^2 + 16x + y^2 - 8y = 4\) 81. \(9x^2 - 36x + 4y^2 + 8y = 104\) 82. \(4x^2 + 8x + 9y^2 + 36y = - 4\) |
- Answers to Odd Numbered Problems:
-
73. Center (1, -2), Horiz. radius \(a = 5\), Vert. radius \(b = 2\)
75. Center (-2, 3), Horiz. radius \(a = 1\), Vert. radius \(b = 5\)
77. Center (-1, 0), Horiz. radius \(a = 2\), Vert. radius \(b = 4\)
79. Center (-1, -2), Horiz. radius \(a = 4\), Vert. radius \(b = 2\)
81. Center (2, -1), Horiz. radius \(a = 4\), Vert. radius \(b = 6\)