4.3e: Exercises - Logarithm Functions
( \newcommand{\kernel}{\mathrm{null}\,}\)
A: Concepts
Exercise 4.3e.A
1) What is a base b logarithm? Discuss the meaning by interpreting each part of the equivalent equations by=x and logbx=y for b>0,b≠1
2) How is the logarithmic function f(x)=logbx related to the exponential function g(x)=bx? What is the result of composing these two functions?
3) How can the logarithmic equation logbx=y be solved for x using the properties of exponents?
4) Discuss the meaning of the common logarithm. What is its relationship to a logarithm with base b, and how does the notation differ?
5) Discuss the meaning of the natural logarithm. What is its relationship to a logarithm with base b, and how does the notation differ?
6) Is f(x)=0 in the range of the function f(x)=log(x)? If so, for what value of x? Verify the result.
7) Is x=0 in the domain of the function f(x)=logx? If so, what is the value of the function when x=0? Verify the result.
- Answers to odd exercises:
-
1. A logarithm is an exponent. Specifically, it is the exponent to which a base b is raised to produce a given value. In the expressions given, the base b has the same value. The exponent, y, in the expression by can also be written as the logarithm, logbx=y, and the value of x is the result of raising b to the power of y.
3. Since the equation of a logarithm is equivalent to an exponential equation, the logarithm can be converted to the exponential equation by=x , and then properties of exponents can be applied to solve for x .
5. The natural logarithm is a special case of the logarithm with base b in that the natural log always has base e. Rather than notating the natural logarithm as loge(x) , the notation used is ln(x).
7. No, the function has no defined value for x=0 . To verify, suppose x=0 is in the domain of the function f(x)=log(x) . Then there is some number n such that n=log(0) . Rewriting as an exponential equation gives: 10n=0 , which is impossible since no such real number n exists. Therefore, x=0 is not the domain of the function f(x)=log(x).
B: Convert from log to exponential form
Exercise 4.3e.B
★ For the following exercises, rewrite each equation in exponential form.
8) log381=4 9) log82=13 10) log51=0 11) log525=2 12) log0.1=−1 13) log93=0.5 |
14. 3=log464 15. 6=log264 16. 0=log121 17. 0=log71 18. 1=log33 19. 1=log99 |
20. 5=lnx 21) ln1=0 22) ln(1e3)=−3 23. x=ln43 24. −4=log110,000 25. 3=log1,000 |
26. 4=logx81 27. 5=logx32 28) logy(x)=−11 29) log13(142)=a 30) logy(137)=x 31) logx(64)=y |
32) log4(q)=m 33) log15(a)=b 34) log16(y)=x 35) loga(b)=c 36) log(v)=t 37) ln(w)=n |
- Answers to odd exercises:
-
9: 81/3=2
11: 52=25
13. 90.5=3
15. 64=26
17. 1=70
19. 9=91
21: e0=1
23. 43=ex
25. 1,000=103
27. 32=x5
29. 13a=142
31. xy=64
33. 15b=a
35. ac=b
37. en=w
C: Convert from exponential to log form
Exercise 4.3e.C
★ For the following exercises, write the equation in equivalent logarithmic form.
38. 23=8 39. 4−2=116 40. 102=100 41. 90=1 42. (13)3=127 43. 4−3/2=0.125 44. 3√64=4 45. n4=103 |
46. 42=16 47. 25=32 48. 33=27 49. 53=125 50. b3=45 51. 9y=150 52. 103=1000 53. 10−2=1100 |
58. (14)2=116 59. (13)4=181 60. 3−2=19 61. 4−3=164 62. x12=√3 63. x13=3√6 |
64. 32x=4√32 65. 17x=5√17 66. ex=6 67. e3=x 68. ex=y 69. ek=h
|
70. m−7=n 71. 10a=b 72. 4x=y 73. 19x=y 74. x−1013=y 75. yx=39100 76. (75)m=n 77. cd=k |
- Answers to odd exercises:
-
39: log4(116)=−2
41: log91=0
43: log40.125=−32
45. logn(103)=4
47. log232=5
49. log5125=3
51: log9150=y
53. log1100=−2
59. log13181=4
61. log4164=−3
63. logx3√6=13
65. log175√17=x
67. lnx=3
69. k=ln(h)
71. log(b)=a
73. log19(y)=x
75. logy(39100)=x
77. logc(k)=d
D: Evaluate logarithms using the definition
Exercise 4.3e.D
★ In the following exercises, find the exact value of each logarithm without using a calculator.
78. log3243 79. log39 80. log44 81. log51 82. log5625 83. log636 84. log749 |
85. log255 86. log82 87. log273 88. log164 89. log4410 90. log995 91) 6log8(4) |
92. log2(164) 93. log2(116) 94) log2(18)+4 95. log3127 96. log3(19) 97. log4(12) 98. log4116 |
100. log5(1125) 101. log9181 102) log6(√6) 103. log53√5 104. log2√2 105. log7(1√7) 106. log9(13√9) 107. log1/91 |
108. log1/327 109. log1/24 110. log122 111. log124 112. log3/4(916) 113. log2/3(23) 114. log27(13) 115. log3/5(53) |
- Answers to odd exercises:
-
79. 2
81. 0
83. 2
85. 12
87. 13
89. 10
91. 4
93. −4
95. −3
97. −12
101. −2
103. 13
106. −12
107. 0
109. −2
111. −2
113. 1
115. −1
E: Evaluate common and natural logarithms without a calculator
Exercise 4.3e.E
★ For the following exercises, use the definition of common and natural logarithms to evaluate without using a calculator.
117. log1000 118. log100 119) log(10,000) 120) log(1008) |
121. log0.1 122) 2log(.0001) 123) log(0.001) 124) log(1)+7 |
125) 2log(100−3) 126) 10log(32) 127) eln(1.06) 128) eln(10.125)+4 |
129. ln(1e) 130. ln(1e5) 131) 25ln(e25) 132) ln(e13) |
133. lne4 134) ln(e−5.03) 135) ln(1) 136) ln(e−0.225)−3 |
- Answers to odd exercises:
-
117. 3
119. 4
12`. −1
123. −3
125. −12
127. 1.06
129. −1
131. 10
133. 4
135. 0
F: Use a calculator to evaluate logs
Exercise 4.3e.F
★ For the following exercises, evaluate each expression using a calculator. Round to the nearest thousandth.
139. log162 140. loge |
141. log0.025 142. log0.235 |
143. ln(25) 144. ln(100) |
145. ln(0.125) 146. ln(0.001) |
147) ln(15) 148) ln(45) |
149) log(√2) 150) ln(√2) |
- Answers to odd exercises:
-
139. 2.210 141. −1.602 143. 3.219 145. −2.079 147. 2.708 149. 0.151
G: Solve log equations by converting to exponential form first
Exercise 4.3e.G
★ In the following exercises, find the value of x in each logarithmic equation without using a calculator by first converting the logarithmic equation to exponential form.
151) log2(x)=−3 152. log2(x)=−6 153) log2(x)=6 154. log2(x)=5 155. log2(x)=8 156. log25√2=x 157) log3(x)=3 158. log3(x)=−5 |
159. log3(x)=4 160. log3(127)=x 161. log5(x)=−3 162) log5(x)=2 163. log5(x)=3 164. log7(x)=−1 165) log6(x)=−3 166. log6(x)=−2 |
167) log9(x)=12 168) log18(x)=2 169. log12(x)=0 170) log(x)=3 171) ln(x)=2 172. ln(x)=9 173. ln(x)=15 |
175. log1/4(x)=−2 176. log2/5(x)=2 177. log1/9(x)=12 178. log1/4(x)=32 179. log1/3(x)=−1 180. log1/5(x)=0 181. log1012=x 182. lne=x |
183. log1/8(164)=x 184. log4/9(23)=x 185. log1319=x 186. log14116=x 187. log1981=x 188. log1464=x 189. logx121=2 190. logx49=2 191. logx64=3 192. logx27=3 |
- Answers to odd exercises:
-
151. x=2−3=18
153. 64
155. 256
157. x=33=27
159. 81
161. 1125
163. x=125
165. x=6−3=1216
167. x=912=3
168. 1
171. x=e2
173. 5√e
175. 16
177. 13
179. 3
181. 12
183. 2
185. x=2
187. x=−2
189. x=11
191. x=4
H: Solve log equations by converting then using a calculator
Exercise 4.3e.H
★ Find x. Round off to the nearest hundredth.
195. logx=2.5 196. logx=1.8 |
197. logx=−1.22 198. logx=−0.8 |
199. lnx=3.1 200. lnx=1.01 |
201. lnx=−0.69 202. lnx=−1 |
- Answers to odd exercises:
-
195. 316.23 197. 0.06 199. 22.20 201. 0.50
I: Extensions
Exercise 4.3e.I
203) Is there a number x such that lnx=2? If so, what is that number? Verify the result.
204) Is the following true: log3(27)log4(164)=−1? Verify the result.
205) Is the following true:
206) The exposure index EI for a 35 millimeter camera is a measurement of the amount of light that hits the film. It is determined by the equation EI=log2(f2t) where f is the “f-stop” setting on the camera, and t is the exposure time in seconds. Suppose the f-stop setting is 8 and the desired exposure time is 2seconds. What will the resulting exposure index be?
207) Refer to the previous exercise. Suppose the light meter on a camera indicates an EI of −2 , and the desired exposure time is 16 seconds. What should the f-stop setting be?
208) The intensity levels I of two earthquakes measured on a seismograph can be compared by the formula log(I1I2)=M1−M2 where M is the magnitude given by the Richter Scale. In August 2009, an earthquake of magnitude 6.1 hit Honshu, Japan. In March 2011, that same region experienced yet another, more devastating earthquake, this time with a magnitude of 9.0. How many times greater was the intensity of the 2011 earthquake? Round to the nearest whole number.
- Answers to odd exercises:
-
203. Yes. Suppose there exists a real number x such that lnx=2. Rewriting as an exponential equation gives x=e2 which is a real number. To verify, let x=e2. Then, by definition, ln(x)=ln(e2)=2.
205. No; ln(1)=0, so ln(e1.725)ln(1)=1.725 is undefined.
207. 2
⋆