Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

4.3e: Exercises - Logarithm Functions

( \newcommand{\kernel}{\mathrm{null}\,}\)

A: Concepts

Exercise 4.3e.A 

1) What is a base b logarithm? Discuss the meaning by interpreting each part of the equivalent equations by=x and logbx=y for b>0,b1

2) How is the logarithmic function f(x)=logbx related to the exponential function g(x)=bx? What is the result of composing these two functions?

3) How can the logarithmic equation logbx=y be solved for x using the properties of exponents?

4) Discuss the meaning of the common logarithm. What is its relationship to a logarithm with base b, and how does the notation differ?

5) Discuss the meaning of the natural logarithm. What is its relationship to a logarithm with base b, and how does the notation differ?

6) Is f(x)=0 in the range of the function f(x)=log(x)?   If so, for what value of x?   Verify the result.

7) Is x=0  in the domain of the function f(x)=logx? If so, what is the value of the function when x=0? Verify the result.

Answers to odd exercises:

1. A logarithm is an exponent. Specifically, it is the exponent to which a base b is raised to produce a given value. In the expressions given, the base b has the same value. The exponent, y, in the expression by can also be written as the logarithm, logbx=y, and the value of x is the result of raising b to the power of y.

3. Since the equation of a logarithm is equivalent to an exponential equation, the logarithm can be converted to the exponential equation by=x , and then properties of exponents can be applied to solve for x .

5. The natural logarithm is a special case of the logarithm with base b in that the natural log always has base e.   Rather than notating the natural logarithm as loge(x) , the notation used is ln(x).

7. No, the function has no defined value for x=0 .   To verify, suppose x=0 is in the domain of the function f(x)=log(x) .   Then there is some number n such that n=log(0) .   Rewriting as an exponential equation gives: 10n=0 , which is impossible since no such real number n exists. Therefore, x=0 is not the domain of the function f(x)=log(x).

B: Convert from log to exponential form

Exercise 4.3e.B 

 For the following exercises, rewrite each equation in exponential form.

8) log381=4

9) log82=13

10) log51=0

11) log525=2

12) log0.1=1

13) log93=0.5

14. 3=log464

15. 6=log264

16. 0=log121

17. 0=log71

18. 1=log33

19. 1=log99

20. 5=lnx

21) ln1=0

22) ln(1e3)=3

23. x=ln43

24. 4=log110,000

25. 3=log1,000

26. 4=logx81

27. 5=logx32

28) logy(x)=11

29) log13(142)=a

30) logy(137)=x

31) logx(64)=y

32) log4(q)=m

33) log15(a)=b

34) log16(y)=x

35) loga(b)=c

36) log(v)=t

37) ln(w)=n

Answers to odd exercises:

9: 81/3=2

11: 52=25

13. 90.5=3

15. 64=26

17. 1=70

19. 9=91

21: e0=1

23. 43=ex

25. 1,000=103

27. 32=x5

29. 13a=142

31. xy=64

33. 15b=a

35. ac=b

37. en=w

C: Convert from exponential to log form

Exercise 4.3e.C 

 For the following exercises, write the equation in equivalent logarithmic form. 

38. 23=8

39. 42=116

40. 102=100

41. 90=1

42. (13)3=127

43. 43/2=0.125

44. 364=4

45. n4=103

46. 42=16

47. 25=32

48. 33=27

49. 53=125

50. b3=45

51. 9y=150

52. 103=1000

53. 102=1100

58. (14)2=116

59. (13)4=181

60. 32=19

61. 43=164

62. x12=3

63. x13=36

64. 32x=432

65. 17x=517

66. ex=6

67. e3=x

68. ex=y

69. ek=h

 

 

 

70. m7=n

71. 10a=b

72. 4x=y

73. 19x=y

74. x1013=y

75. yx=39100

76. (75)m=n

77. cd=k

Answers to odd exercises:

39: log4(116)=2

41: log91=0

43: log40.125=32

45. logn(103)=4

47. log232=5

49. log5125=3

51: log9150=y

53. log1100=2

59. log13181=4

61. log4164=3

63. logx36=13

65. log17517=x

67. lnx=3

69. k=ln(h)

71. log(b)=a

73. log19(y)=x

75. logy(39100)=x

77. logc(k)=d

D: Evaluate logarithms using the definition

Exercise 4.3e.D 

 In the following exercises, find the exact value of each logarithm without using a calculator.

78. log3243

79. log39

80. log44

81. log51

82. log5625

83. log636

84. log749

85. log255

86. log82

87. log273

88. log164

89. log4410

90. log995

91) 6log8(4)

92. log2(164)

93. log2(116)

94) log2(18)+4

95. log3127

96. log3(19)

97. log4(12)

98. log4116

100. log5(1125)

101. log9181

102) log6(6)

103. log535

104. log22

105. log7(17)

106. log9(139)

107. log1/91

108. log1/327

109. log1/24

110. log122

111. log124

112. log3/4(916)

113. log2/3(23)

114. log27(13)

115. log3/5(53)

Answers to odd exercises:

79. 2

81. 0

83. 2

85. 12

87. 13

89. 10

91. 4

 

93. 4

95. 3

97. 12

 

101. 2

103. 13

106. 12

107. 0

109. 2

111. 2

113. 1

115. 1

E: Evaluate common and natural logarithms without a calculator

Exercise 4.3e.E 

 For the following exercises, use the definition of common and natural logarithms to evaluate without using a calculator.

117. log1000

118. log100

119) log(10,000)

120) log(1008)

121.  log0.1  

122) 2log(.0001)

123) log(0.001)

124) log(1)+7

125) 2log(1003)

126) 10log(32)

127) eln(1.06)

128) eln(10.125)+4

129. ln(1e)

130. ln(1e5)

131) 25ln(e25)

132) ln(e13)

133. lne4

134) ln(e5.03)

135) ln(1)

136) ln(e0.225)3

Answers to odd exercises:

117. 3

119. 4

12`. 1

123. 3

125. 12

127. 1.06

129. 1

131. 10

133. 4

135. 0

F: Use a calculator to evaluate logs

Exercise 4.3e.F 

 For the following exercises, evaluate each expression using a calculator. Round to the nearest thousandth.

139. log162

140. loge

141. log0.025

142. log0.235

143. ln(25)

144. ln(100)

145. ln(0.125)

146. ln(0.001)

147) ln(15)

148) ln(45)

149) log(2)

150) ln(2)

Answers to odd exercises:
139. 2.210 141. 1.602 143. 3.219 145. 2.079 147. 2.708 149. 0.151

G: Solve log equations by converting to exponential form first

Exercise 4.3e.G 

 In the following exercises, find the value of x in each logarithmic equation without using a calculator by first converting the logarithmic equation to exponential form.

151) log2(x)=3

152. log2(x)=6

153) log2(x)=6

154. log2(x)=5

155. log2(x)=8

156. log252=x

157) log3(x)=3

158. log3(x)=5

159. log3(x)=4

160.  log3(127)=x

161. log5(x)=3

162) log5(x)=2

163. log5(x)=3

164. log7(x)=1

165)  log6(x)=3

166. log6(x)=2

167) log9(x)=12

168) log18(x)=2

169. log12(x)=0

170) log(x)=3

171) ln(x)=2

172. ln(x)=9

173. ln(x)=15

175. log1/4(x)=2

176. log2/5(x)=2

177. log1/9(x)=12

178. log1/4(x)=32

179. log1/3(x)=1

180. log1/5(x)=0

181. log1012=x

182. lne=x

183. log1/8(164)=x

184. log4/9(23)=x

185. log1319=x

186. log14116=x

187. log1981=x

188. log1464=x

189. logx121=2

190. logx49=2

191. logx64=3

192. logx27=3

Answers  to odd exercises:

151. x=23=18

153. 64

155. 256

157. x=33=27

159. 81

161. 1125

163. x=125

165. x=63=1216

167. x=912=3

168. 1

171. x=e2

173. 5e

175. 16

177. 13

179. 3

181. 12

183. 2

185. x=2

187. x=2

189. x=11

191. x=4

H: Solve log equations by converting then using a calculator

Exercise 4.3e.H 

 Find x. Round off to the nearest hundredth.

195. logx=2.5

196. logx=1.8

197. logx=1.22

198. logx=0.8

199. lnx=3.1

200. lnx=1.01

201. lnx=0.69

202. lnx=1

Answers  to odd exercises:
195. 316.23 197. 0.06 199. 22.20 201. 0.50

I: Extensions

Exercise 4.3e.I 

203) Is there a number x such that lnx=2? If so, what is that number? Verify the result.

204) Is the following true: log3(27)log4(164)=1? Verify the result.

205) Is the following true:

206) The exposure index EI for a 35 millimeter camera is a measurement of the amount of light that hits the film. It is determined by the equation EI=log2(f2t) where f is the “f-stop” setting on the camera, and t is the exposure time in seconds. Suppose the f-stop setting is 8 and the desired exposure time is 2seconds. What will the resulting exposure index be?

207) Refer to the previous exercise. Suppose the light meter on a camera indicates an EI of   2 , and the desired exposure time is 16 seconds. What should the f-stop setting be?

208) The intensity levels I of two earthquakes measured on a seismograph can be compared by the formula log(I1I2)=M1M2 where M is the magnitude given by the Richter Scale. In August 2009, an earthquake of magnitude 6.1 hit Honshu, Japan. In March 2011, that same region experienced yet another, more devastating earthquake, this time with a magnitude of 9.0. How many times greater was the intensity of the 2011 earthquake? Round to the nearest whole number.

Answers to odd exercises:

203. Yes. Suppose there exists a real number x such that lnx=2. Rewriting as an exponential equation gives x=e2 which is a real number. To verify, let x=e2. Then, by definition, ln(x)=ln(e2)=2.

205. No; ln(1)=0, so ln(e1.725)ln(1)=1.725 is undefined.

207. 2


4.3e: Exercises - Logarithm Functions is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

  • Was this article helpful?

Support Center

How can we help?