Loading [MathJax]/jax/output/HTML-CSS/jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

11.16: A.13.1- Section 13.1 Answers

( \newcommand{\kernel}{\mathrm{null}\,}\)

2. y=x+2e1(exe(x1))

3. y=x2x33+cx with c arbitrary

4. y=x+2ex+e(x1)

5. y=14+114cos2x+94sin2x

6. y=(x2+138x)ex

7. y=2e2x+3(5e3x4e4x)e1516e)+2e4(4e3(x1)3e4(x1))16e15

8. batF(t)dt=0y=xaxF(t)dtx0tF(t)dt+c1x with c1 arbitrary

9.

  1. bakπ (k= integer) y=sin(x1)sin(ba)bxF(t)sin(tb)dt+sin(xb)sin(ba)xaF(t)sin(ta)dt
  2. baF(t)sin(ta)dt=0y=sin(xa)bxF(t)cos(ta)dtcos(xa)xaF(t)sin(ta)dt+c1sin(xa) with c1 arbitrary

10.

  1. ba(k+1/2)π(k= integer)y=sin(xa)cos(ba)bxF(t)cos(tb)dtcos(xb)cos(ba)bxF(t)sin(ta)dt
  2. baF(t)sin(ta)dt=0y=sin(xa)bxF(t)cos(ta)dtcos(xa)xaF(t)sin(ta)dt+c1sin(xa) with c1 arbitrary

11.

  1. bakπ(k= integer)y=cos(xa)sin(ba)bxF(t)cos(tb)dt+cos(xb)sin(ba)xaF(t)cos(ta)dt
  2. baF(t)cos(ta)dt=0y=cos(xa)bxF(t)sin(ta)dt+sin(xa)xaF(t)cos(ta)dt+c1cos(xa) with c1 arbitrary

12. y=sinh(xa)sinh(ba)bxF(t)sinh(tb)dt+sinh(xb)sinh(ba)xaF(t)sinh(ta)dt

13. y=sinh(xa)cosh(ba)bxF(t)cosh(tb)dtcosh(xb)cosh(ba)xaF(t)sinh(ta)dt

14. y=cosh(xa)sinh(ba)bxF(t)cosh(tb)dtcosh(xb)sinh(ba)xaF(t)cosh(ta)dt

15. y=12(exbxetF(t)dt+exxaetF(t)dt)

16. If ω isn't a positive integer, then y=1ωsinωπ(sinωxπxF(t)sinω(tπ)dt+sinω(xπ)x0F(t)sinωtdt). If ω=n (positive integer), then π0F(t)sinntdt=0 is necessary for existence of a solution. In this case, y=1n(sinnxπxF(t)cosntdt+cosnxx0F(t)sinntdt)+c1sinnx with c1arbitrary.

17. If ωn+1/2(n= integer), then y=sinωxωcosωππxF(t)cosω(tπ)dtcosω(xπ)ωcosωπx0F(t)sinωtdt. If ω=n+1/2(n= integer), then π0F(t)sin(n+1/2)tdt=0 is necessary for existence of a solution. In this case, y=sin(n+1/2)xn+1/2πxF(t)cos(n+1/2)tdtcos(n+1/2)xn+1/2x0F(t)sin(n+1/2)tdt+c1sin(n+1/2)x with c1 arbitrary.

18. If ωn+1/2(n= integer), then y=cosωxωcosωππxF(t)sinω(tπ)dt+sinω(xπ)ωcosωπx0F(t)cosωtdt. If ω=n+1/2(n= integer), then π0F(t)cos(n+1/2)tdt=0 is necessary for existence of a solution. In this case, y=cos(n+1/2)xn+1/2πxF(t)sin(n+1/2)tdt+sin(n+1/2)xn+1/2x0F(t)cos(n+1/2)tdt+c1cos(n+1/2)x with c1 arbitrary.

19. If ω isn't a positive integer, then y=1ωsinωπ(cosωxπxF(t)cosω(tπ)dt+cosω(xπ)x0F(t)cosωtdt). If ω=n (positive integer), then π0F(t)cosntdt=0 is necessary for existence of a solution. In this case, y=1n(cosnxπxF(t)sinntdt+sinnxx0F(t)cosntdt)+c1cosnx with c1 arbitrary.

20. y1=B1(z2)z1B1(z1)z2

21.

  1. G(x,t)={(ta)(xb)baatx,(xa)(tb)(ba)xtby=1ba((xa)bx(tb)F(t)dt+(xb)xa(ta)F(t)dt)
  2. G(x,t)={atatxaxxtby=(ax)bxF(t)dt+xa(at)F(t)dt
  3. G(x,t)={xbatxtbxtby=bx(tb)F(t)dt+(xb)xaF(t)dt
  4. baF(t)dt=0 is a necessary condition for existence of a solution. Then y=bxtF(t)dt+xxaF(t)dt+c1 with c1 arbitrary.

22. G(x,t)={(2+t)(3x)5,0tx,(2+x)(3t)5,xt1

  1. y=x2x22
  2. y=5x27x1430
  3. y=5x49x1860

23. G(x,t)={costsinxt3/2x,π2tx,cosxsintt3/2x,xtπ

  1. y=1+cosxsinxx
  2. y=x+πcosxπ/2sinxx

24. G(x,t)={(t1)x(x2)t3,1tx,x(x1)(t2)t3,xt2

  1. y=x(x1)(x2)
  2. y=x(x1)(x2)(x+3)

25. G(x,t)={122(3+1t2)(x+4x),1x2,122(3x+1x)(1+4t2),xt2

  1. y=x211x+411x
  2. y=11x345x2433x
  3. y=11x4139x22888x

26. α(ρ+δ)βρ0G(x,t)={(βαt)(ρ+δρx)α(ρ+δ)βρ,0tx,(βαx)(ρ+δρt)α(ρ+δ)βρ,xt1

27. αδβρ0G(x,t)={(βcostαsint)(δcosxρsinx)αδβρ,0tx,(βcosxαsinx)(δcostρsinx)αδβρxtπ

28. αρ+βδ0G(x,t)={(βcostαsint)(ρcosx+δsinx)αρ+βδ,xtπ(βcosxαsinx)(ρcost+δsint)αρ+βδ0tx

29. αδβρ0G(x,t)={e(xt)(βcost(α+β)sint)(δcosx(ρ+δ)sinx)αδβρ0tx,ext(βcosx(α+β)sinx)(δcost(ρ+δ)sint)αδβρxtπ

30. βδ+(α+β)0G(x,t)={ext(βcost(α+β)sint)((ρ+δ)cosx+δsinx)βδ+(α+β)(ρ+δ),0tx,ext(βcosx(α+β)sinx)((ρ+δ)cost+δsint)βδ+(α+β)(ρ+δ),xtπ/2

31. (ρ+δ)(αβ)e(ba)(ρδ)(α+β)e(ab)0G(x,t)={((αβ)e(ta)(α+β)e(ta)((ρδ)e(xb)(ρ+δ)e(xb))2[(ρ+δ)(αβ)e(ba)(ρδ)(α+β)e(ab)],0tx,((αβ)e(xa)(α+β)e(xa))((ρδ)e(tb)(ρ+δ)e(tb))2[(ρ+δ)(αβ)e(ba)(ρδ)(α+β)e(ab)],xtπ


This page titled 11.16: A.13.1- Section 13.1 Answers is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by William F. Trench.

Support Center

How can we help?