11.16: A.13.1- Section 13.1 Answers
- Last updated
- Dec 31, 2022
- Save as PDF
- Page ID
- 121473
( \newcommand{\kernel}{\mathrm{null}\,}\)
2. y=−x+2e−1(ex−e(x−1))
3. y=x2−x33+cx with c arbitrary
4. y=−x+2ex+e−(x−1)
5. y=14+114cos2x+94sin2x
6. y=(x2+13−8x)ex
7. y=2e2x+3(5e3x−4e4x)e15−16e)+2e4(4e3(x−1)−3e4(x−1))16e−15
8. ∫batF(t)dt=0y=−x∫axF(t)dt−∫x0tF(t)dt+c1x with c1 arbitrary
9.
- b−a≠kπ (k= integer) y=sin(x−1)sin(b−a)∫bxF(t)sin(t−b)dt+sin(x−b)sin(b−a)∫xaF(t)sin(t−a)dt
- ∫baF(t)sin(t−a)dt=0y=−sin(x−a)∫bxF(t)cos(t−a)dt−cos(x−a)∫xaF(t)sin(t−a)dt+c1sin(x−a) with c1 arbitrary
10.
- b−a≠(k+1/2)π(k= integer)y=−sin(x−a)cos(b−a)∫bxF(t)cos(t−b)dt−cos(x−b)cos(b−a)∫bxF(t)sin(t−a)dt
- ∫baF(t)sin(t−a)dt=0y=−sin(x−a)∫bxF(t)cos(t−a)dt−cos(x−a)∫xaF(t)sin(t−a)dt+c1sin(x−a) with c1 arbitrary
11.
- b−a≠kπ(k= integer)y=cos(x−a)sin(b−a)∫bxF(t)cos(t−b)dt+cos(x−b)sin(b−a)∫xaF(t)cos(t−a)dt
- ∫baF(t)cos(t−a)dt=0y=cos(x−a)∫bxF(t)sin(t−a)dt+sin(x−a)∫xaF(t)cos(t−a)dt+c1cos(x−a) with c1 arbitrary
12. y=sinh(x−a)sinh(b−a)∫bxF(t)sinh(t−b)dt+sinh(x−b)sinh(b−a)∫xaF(t)sinh(t−a)dt
13. y=−sinh(x−a)cosh(b−a)∫bxF(t)cosh(t−b)dt−cosh(x−b)cosh(b−a)∫xaF(t)sinh(t−a)dt
14. y=−cosh(x−a)sinh(b−a)∫bxF(t)cosh(t−b)dt−cosh(x−b)sinh(b−a)∫xaF(t)cosh(t−a)dt
15. y=−12(ex∫bxe−tF(t)dt+e−x∫xaetF(t)dt)
16. If ω isn't a positive integer, then y=1ωsinωπ(sinωx∫πxF(t)sinω(t−π)dt+sinω(x−π)∫x0F(t)sinωtdt). If ω=n (positive integer), then ∫π0F(t)sinntdt=0 is necessary for existence of a solution. In this case, y=−1n(sinnx∫πxF(t)cosntdt+cosnx∫x0F(t)sinntdt)+c1sinnx with c1arbitrary.
17. If ω≠n+1/2(n= integer), then y=−sinωxωcosωπ∫πxF(t)cosω(t−π)dt−cosω(x−π)ωcosωπ∈x0F(t)sinωtdt. If ω=n+1/2(n= integer), then ∫π0F(t)sin(n+1/2)tdt=0 is necessary for existence of a solution. In this case, y=−sin(n+1/2)xn+1/2∫πxF(t)cos(n+1/2)tdt−cos(n+1/2)xn+1/2∫x0F(t)sin(n+1/2)tdt+c1sin(n+1/2)x with c1 arbitrary.
18. If ω≠n+1/2(n= integer), then y=cosωxωcosωπ∫πxF(t)sinω(t−π)dt+sinω(x−π)ωcosωπ∫x0F(t)cosωtdt. If ω=n+1/2(n= integer), then ∫π0F(t)cos(n+1/2)tdt=0 is necessary for existence of a solution. In this case, y=cos(n+1/2)xn+1/2∫πxF(t)sin(n+1/2)tdt+sin(n+1/2)xn+1/2∫x0F(t)cos(n+1/2)tdt+c1cos(n+1/2)x with c1 arbitrary.
19. If ω isn't a positive integer, then y=1ωsinωπ(cosωx∫πxF(t)cosω(t−π)dt+cosω(x−π)∫x0F(t)cosωtdt). If ω=n (positive integer), then ∫π0F(t)cosntdt=0 is necessary for existence of a solution. In this case, y=−1n(cosnx∫πxF(t)sinntdt+sinnx∫x0F(t)cosntdt)+c1cosnx with c1 arbitrary.
20. y1=B1(z2)z1−B1(z1)z2
21.
- G(x,t)={(t−a)(x−b)b−aa≤t≤x,(x−a)(t−b)(b−a)x≤t≤by=1b−a((x−a)∫bx(t−b)F(t)dt+(x−b)∫xa(t−a)F(t)dt)
- G(x,t)={a−ta≤t≤xa−xx≤t≤by=(a−x)∫bxF(t)dt+∫xa(a−t)F(t)dt
- G(x,t)={x−ba≤t≤xt−bx≤t≤by=∫bx(t−b)F(t)dt+(x−b)∫xaF(t)dt
- ∫baF(t)dt=0 is a necessary condition for existence of a solution. Then y=∫bxtF(t)dt+x∫xaF(t)dt+c1 with c1 arbitrary.
22. G(x,t)={−(2+t)(3−x)5,0≤t≤x,−(2+x)(3−t)5,x≤t≤1
- y=x2−x−22
- y=5x2−7x−1430
- y=5x4−9x−1860
23. G(x,t)={costsinxt3/2√x,π2≤t≤x,cosxsintt3/2√x,x≤t≤π
- y=1+cosx−sinx√x
- y=x+πcosx−π/2sinx√x
24. G(x,t)={(t−1)x(x−2)t3,1≤t≤x,x(x−1)(t−2)t3,x≤t≤2
- y=x(x−1)(x−2)
- y=x(x−1)(x−2)(x+3)
25. G(x,t)={−122(3+1t2)(x+4x),1≤x≤2,−122(3x+1x)(1+4t2),x≤t≤2
- y=x2−11x+411x
- y=11x3−45x2−433x
- y=11x4−139x2−2888x
26. α(ρ+δ)−βρ≠0G(x,t)={(β−αt)(ρ+δ−ρx)α(ρ+δ)−βρ,0≤t≤x,(β−αx)(ρ+δ−ρt)α(ρ+δ)−βρ,x≤t≤1
27. αδ−βρ≠0G(x,t)={(βcost−αsint)(δcosx−ρsinx)αδ−βρ,0≤t≤x,(βcosx−αsinx)(δcost−ρsinx)αδ−βρx≤t≤π
28. αρ+βδ≠0G(x,t)={(βcost−αsint)(ρcosx+δsinx)αρ+βδ,x≤t≤π(βcosx−αsinx)(ρcost+δsint)αρ+βδ0≤t≤x
29. αδ−βρ≠0G(x,t)={e(x−t)(βcost−(α+β)sint)(δcosx−(ρ+δ)sinx)αδ−βρ0≤t≤x,ex−t(βcosx−(α+β)sinx)(δcost−(ρ+δ)sint)αδ−βρx≤t≤π
30. βδ+(α+β)≠0G(x,t)={ex−t(βcost−(α+β)sint)((ρ+δ)cosx+δsinx)βδ+(α+β)(ρ+δ),0≤t≤x,ex−t(βcosx−(α+β)sinx)((ρ+δ)cost+δsint)βδ+(α+β)(ρ+δ),x≤t≤π/2
31. (ρ+δ)(α−β)e(b−a)−(ρ−δ)(α+β)e(a−b)≠0G(x,t)={((α−β)e(t−a)−(α+β)e−(t−a)((ρ−δ)e(x−b)−(ρ+δ)e−(x−b))2[(ρ+δ)(α−β)e(b−a)−(ρ−δ)(α+β)e(a−b)],0≤t≤x,((α−β)e(x−a)−(α+β)e−(x−a))((ρ−δ)e(t−b)−(ρ+δ)e−(t−b))2[(ρ+δ)(α−β)e(b−a)−(ρ−δ)(α+β)e(a−b)],x≤t≤π