# 11.17: A.13.2- Section 13.2 Answers

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

1. $$(e^{bx}y')'+ce^{bx}y=0$$

2. $$(xy')'+\left(x-\frac{\nu ^{2}}{x}\right)y=0$$

3. $$(\sqrt{1-x^{2}}y')'+\frac{\alpha ^{2}}{\sqrt{1-x^{2}}}y=0$$

4. $$(x^{b}y')'+cx^{b-2}y=0$$

5. $$(e^{-x^{2}}y')'+2\alpha e^{-x^{2}}y=0$$

6. $$(xe^{-x}y')'+\alpha e^{-x}y=0$$

7. $$((1-x^{2})y')'+\alpha (\alpha +1)y=0$$

9. $$\lambda_{n}=n^{2}\pi ^{2},\quad y_{n}=e^{-x}\sin n\pi x\: (n=$$ positive integer)

10. $$\lambda_{0}=-1,\quad y_{0}=1\quad\lambda_{n}=n^{2}\pi ^{2},\quad y_{n}=e^{-x}(n\pi\cos n\pi x+\sin n\pi x)\: (n=$$ positive integer)

11.

1. $$\lambda =0$$ is an eigenvalue $$y_{0}=2-x$$
2. none
3. $$5.0476821,\: 14.9198790,\: 29.7249673,\: 49.4644528\quad y=2\sqrt{\lambda }\cos\sqrt{\lambda }x-\sin\sqrt{\lambda }x$$

12.

1. $$\lambda =0$$ isn't an eigenvalue
2. $$−0.5955245\quad y=\cosh\sqrt{-\lambda }x$$
3. $$8.8511386,\: 38.4741053,\: 87.8245457,\: 156.9126094\quad y=\cos\sqrt{\lambda }x$$

13.

1. $$\lambda =0$$ isn't an eigenvalue
2. none
3. $$0.1470328,\: 1.4852833,\: 4.5761411,\: 9.6059439\quad y=\sqrt{\lambda }\cos\sqrt{\lambda }x+\sin\sqrt{\lambda }x$$

14.

1. $$\lambda =0$$ isn't an eigenvalue
2. $$−0.1945921\quad y=2\sqrt{-\lambda }\cosh\sqrt{-\lambda }x-\sinh\sqrt{-\lambda }x$$
3. $$1.9323619,\: 5.9318981,\: 11.9317920,\: 19.9317507\quad y=2\sqrt{\lambda }\cos\sqrt{\lambda }x-\sin\sqrt{\lambda }x$$

15.

1. $$\lambda =0$$ isn't an eigenvalue
2. $$−1.0664054\quad y=\cosh\sqrt{-\lambda }x$$
3. $$1.5113188,\: 8.8785880,\: 21.2104662,\: 38.4805610\quad y=\cos\sqrt{\lambda }x$$

16.

1. $$\lambda =0$$ isn't an eigenvalue
2. $$−1.0239346\quad y=\sqrt{-\lambda }\cosh\sqrt{-\lambda }x-\sinh\sqrt{-\lambda }x$$
3. $$2.0565705,\: 9.3927144,\: 21.7169130,\: 38.9842177\quad y=\sqrt{\lambda }\cos\sqrt{\lambda }x-\sin\sqrt{\lambda }x$$

17.

1. $$\lambda =0$$ isn't an eigenvalue
2. $$−0.4357577\quad y=2\sqrt{-\lambda }\cosh\sqrt{-\lambda }x-\sinh\sqrt{-\lambda }x$$
3. $$0.3171423,\: 3.7055350,\: 9.1970150,\: 16.8760401\quad y=2\sqrt{\lambda }\cos\sqrt{\lambda }x-\sin\sqrt{\lambda }x$$

18.

1. $$\lambda =0$$ isn't an eigenvalue
2. $$−2.1790546,\: −9.0006633\quad y=\sqrt{-\lambda }\cosh\sqrt{-\lambda }x-3\sinh\sqrt{-\lambda }x$$
3. $$5.8453181,\: 17.9260967,\: 35.1038567,\: 57.2659330\quad y=\sqrt{\lambda }\cos\sqrt{\lambda }x-3\sin\sqrt{\lambda }x$$

19.

1. $$\lambda =0$$ is an eigenvalue $$y_{0}=2-x$$
2. $$−1.0273046\quad y=2\sqrt{-\lambda }\cosh\sqrt{-\lambda }x-\sinh\sqrt{-\lambda }x$$
3. $$8.8694608,\: 16.5459202,\: 26.4155505,\: 38.4784094\quad y=2\sqrt{\lambda }\cos\sqrt{\lambda }x-\sin\sqrt{\lambda }x$$

20.

1. $$\lambda =0$$ isn't an eigenvalue
2. $$−7.9394171,\: −3.1542806\quad y=2\sqrt{-\lambda }\cosh\sqrt{-\lambda }x-5\sinh\sqrt{-\lambda }x$$
3. $$29.3617465,\: 78.777456,\: 147.8866417,\: 236.7229622\quad y=2\sqrt{\lambda }\cos\sqrt{\lambda }x-5\sin\sqrt{\lambda }x$$

21. $$λ = 0,\quad y = xe^{−x}\quad 20.1907286,\: 118.8998692,\: 296.5544121,\: 553.1646458\quad y = e^{−x} \sin \sqrt{\lambda }x$$

22. $$λ_{n} = n^{2}\pi ^{2},\quad y_{n} = x \sin n\pi (x − 2)\quad (n =$$ positive integer)

23. $$λ = 0,\quad y = x(2 − x)\quad 20.1907286,\: 118.8998692,\: 296.5544121\: 553.1646458,\quad y = x \sin\sqrt{\lambda } (x − 2)$$

24. $$3.3730893,\: 23.1923372,\: 62.6797232,\: 121.8999231,\: 200.8578309\quad y = x \sin\sqrt{\lambda } (x − 1)$$

25.

1. $$-L<\delta <0$$
2. $$\delta =-L$$

26. $$\lambda _{0}=-1\alpha ^{2}\quad y_{0}=e^{-x/a}\quad\lambda _{n}=n^{2},\quad y_{n}=n\alpha\cos nx-\sin nx,\quad n=1,2,\ldots$$

27.

1. $$y=x-\alpha$$
2. $$y=\alpha k\cosh kx-\sin kx$$
3. $$y=\alpha k\cos kx-\sin kx$$

29. b. $$\lambda =-\alpha ^{2}/\beta ^{2}\quad y=e^{-\alpha x/\beta }$$

This page titled 11.17: A.13.2- Section 13.2 Answers is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by William F. Trench.