# 3E: Exercises

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$
##### Exercise $$\PageIndex{1}$$
1. Consider the symmetric group $$S_4$$.

1. Find all the subgroup lattice of $$S_4$$, the symmetric group of order 24.

2. Find the centre of $$S_4$$.

3. Find the normalizer of each subgroup of $$S_4$$.

4. Find the cyclic subgroup of $$S_4$$ that has an order of 4.

5. Find a non-cyclic subgroup of $$S_4$$ that has order 4.

##### Exercise $$\PageIndex{2}$$
1. Consider the Dihedral group $$D_4$$.

1. Find all the subgroup lattice of $$D_4$$, the Dihedral group of order 8.

2. Find the centre of $$D_4$$.

3. Find the normalizer of each subgroup $$D_4$$.

4. Prove that every subgroup of $$D_4$$ of odd order is cyclic.

##### Exercise $$\PageIndex{3}$$
1. Prove that the following groups are non-abelian.

1. $$S_n$$, for $$n\ge 3$$.

2. $$A_n$$ for $$n \ge 4$$.

3. $$D_n$$, for $$n \ge 3$$.

##### Exercise $$\PageIndex{4}$$

Show that for $$n \ge 3$$, $$Z(S_n)=\{1\}$$.

##### Exercise $$\PageIndex{5}$$

a. Find a cyclic subgroup of $$A_8$$ that has order 4.

b. Find a non-cyclic subgroup of $$A_8$$ that has order 4.

##### Exercise $$\PageIndex{6}$$

Suppose that $$\sigma$$ and $$\tau$$ in $$S_5$$ satisfying  $$\tau \sigma = (1, 5, 2, 3)$$ and  $$\sigma \tau = (1, 2, 4, 5).$$ If  $$\sigma(1)=2,$$ find  $$\sigma$$ and  $$\tau.$$

##### Exercise $$\PageIndex{7}$$

Factor the permutation $$(1,2,3,4,5)(6,7)(1,3,5,7)(1,6,3)$$ into disjoint cycles.

##### Exercise $$\PageIndex{8}$$

Let  $$\sigma = (k_1, k_2, \cdots, k_r)$$ be an $$r-$$cycle. If  $$\gamma \in S_n,$$ show that  $$\gamma \sigma \gamma^{-1}$$ is also a cycle; infact $$\gamma \sigma \gamma^{-1}= (\gamma(k_1), \gamma(k_2), \cdots, \gamma(k_r))$$

##### Exercise $$\PageIndex{9}$$

Show that every product of $$3-$$ cycles is an even permutation.

##### Exercise $$\PageIndex{10}$$

Show that every even permutation is a product of $$3-$$ cycles.

##### Exercise $$\PageIndex{11}$$
1. Let $$G$$ be a group. $$H=\{g^2: g\in G\}.$$ Prove or disprove:  $$H$$ is a subgroup.

(Hint: $$G=A_4.$$)

##### Exercise $$\PageIndex{12}$$

a. Find an element of maximum order in $$S_5$$.

b. Find an element of maximum order in $$S_7$$.

##### Exercise $$\PageIndex{13}$$

a. Let $$H$$ be a subgroup of $$A_4$$ containing $$K=\{e,(1,2)(3,4), (1,3)(2,4), (1,4)(2,3)\}$$. Shoe that if $$H$$ contains a $$3-$$ cycle then $$H=A_4.$$

b. Show that $$A_4$$ has no subgroup of order $$6.$$

This page titled 3E: Exercises is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Pamini Thangarajah.