Skip to main content
Mathematics LibreTexts

3E: Exercises

  • Page ID
    132487
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)
    Exercise \(\PageIndex{1}\)

    Compute the following permutations:

    1. \((1435)(231)\)
    2. \(143)(231)^2\)
    3. \((1345)^{-1}(234)(123)\)
    4. \((1234)^4\)
    Exercise \(\PageIndex{2}\)
    1. Consider the symmetric group \(S_4 \).

      1. Find all the subgroup lattice of \(S_4 \), the symmetric group of order 24. 

      2. Find the centre of \(S_4 \).

      3. Find the normalizer of each subgroup of \(S_4 \). 

      4. Find the cyclic subgroup of \(S_4 \) with an order of 4. 

      5. Find a non-cyclic subgroup of \(S_4 \) with order 4.

    Exercise \(\PageIndex{3}\)
    1. Consider the Dihedral group \(D_4 \).

      1. Find all the subgroup lattice of \(D_4 \), the Dihedral group of order 8.

      2. Find the centre of \(D_4 \).

      3. Find the normalizer of each subgroup \(D_4 \).

      4. Prove that every subgroup of \(D_4 \) of odd order is cyclic.

    Exercise \(\PageIndex{4}\)
    1. Prove that the following groups are non-abelian.

      1. \(S_n \), for \(n\ge 3 \).

      2. \(A_n \) for \(n \ge 4 \).

      3. \(D_n \), for \(n \ge 3 \).

    Exercise \(\PageIndex{5}\)

    Show that for \(n \ge 3 \), \(Z(S_n)=\{1\} \).

    Exercise \(\PageIndex{6}\)

    a. Find a cyclic subgroup of \(A_8 \) that has order 4.  

    b. Find a non-cyclic subgroup of \(A_8 \) that has order 4.

    Exercise \(\PageIndex{7}\)

    Suppose that \( \sigma \) and \( \tau \) in \(S_5 \) satisfying  \( \tau \sigma = (1, 5, 2, 3) \) and  \( \sigma \tau = (1, 2, 4, 5). \) If  \( \sigma(1)=2, \) find  \( \sigma \) and  \( \tau. \)

    Exercise \(\PageIndex{8}\)

    1) Factor the permutation \((1,2,3,4,5)(6,7)(1,3,5,7)(1,6,3) \) into disjoint cycles.

    2) Express the permutation \((1,2,3,4,5)(6,7)(1,3,5,7)(1,6,3) \) as products of transpositions, and decide if it is even or odd.

    Exercise \(\PageIndex{9}\)

    Let  \( \sigma = (k_1, k_2, \cdots, k_r) \) be an \(r- \)cycle. If  \( \gamma \in S_n, \) show that  \( \gamma \sigma \gamma^{-1} \) is also a cycle; infact \( \gamma \sigma \gamma^{-1}= (\gamma(k_1), \gamma(k_2), \cdots, \gamma(k_r)) \) 

    Exercise \(\PageIndex{10}\)

    Show that every product of \(3- \) cycles is an even permutation.

    Exercise \(\PageIndex{11}\)

    Show that every even permutation is a product of \(3- \) cycles.

    Exercise \(\PageIndex{12}\)

    Let \(G \) be a group. \(H=\{g^2: g\in G\}. \) Prove or disprove:  \(H \) is a subgroup. 

    (Hint: \(G=A_4. \))

    Exercise \(\PageIndex{13}\)

    a. Find an element of maximum order in \(S_5\).

    b. Find an element of maximum order in \(S_7\).

    Exercise \(\PageIndex{14}\)

    a. Let \(H\) be a subgroup of \(A_4\) containing \(K=\{e,(1,2)(3,4), (1,3)(2,4), (1,4)(2,3)\}\). Show that if \(H\) contains a \(3-\) cycle then \(H=A_4.\)

    b. Show that \(A_4\) has no subgroup of order \(6.\)

     


    This page titled 3E: Exercises is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Pamini Thangarajah.

    • Was this article helpful?