2.3: Arithmetic of inequality
( \newcommand{\kernel}{\mathrm{null}\,}\)
Definition: Inequality
Let a,b∈Z. Then
- a<b provided b=a+k, for some k∈Z+.
- a>b provided a=b+h, for some h∈Z+.
Theorem 2.3.1
Let a,b∈Z.
- If a<b then a+c<b+c, ∀c∈Z.
- If a<b then ac<bc,∀c∈Z+.
- If a<b then ac>bc,∀c∈Z−.
- If a<b and c<d then a+c<b+d.
- Proof
-
Let a,b,c∈Z such that a<b. Then b=a+k, for some k∈Z+.
1. Now consider, b+c=(a+k)+c=(a+c)+k, for some k∈Z+. Thus a+c<b+c.
2.
Example 2.3.1:
Determine all integers m that satisfy −12m≥324.
Solution
Since −12m≥324, m≤−32412=−27.
Example 2.3.2:
Determine all integers m that satisfy 14m≥635.
Solution
Since 14m≥635, m≥63514=45.35. Thus the solutions are {m∈Z|m≥46}.
Example 2.3.3:
Determine all integers k that satisfy −165+98k≥0,−335+199k≥0,−165+98k<100 and −335+199k<100.
Solution
Since −165+98k≥0,k≥1.68.
Since −335+199k≥0,k≥1.68.
Since −165+98k<100,98k<265, and k<2.70.
Since −335+199k<100,199k<435, and k<2.18.
Since 1.68≤k<2.18 and k∈ℤ,k=2.