Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

2.3: Arithmetic of inequality

( \newcommand{\kernel}{\mathrm{null}\,}\)

Definition: Inequality

Let a,bZ. Then

  1. a<b provided b=a+k, for some kZ+.
  2. a>b provided a=b+h, for some hZ+.

Theorem 2.3.1

Let a,bZ.

  1. If a<b then a+c<b+c, cZ.
  2. If a<b then ac<bc,cZ+.
  3. If a<b then ac>bc,cZ.
  4. If a<b and c<d then a+c<b+d.
Proof

Let a,b,cZ such that a<b. Then b=a+k, for some kZ+.

1. Now consider, b+c=(a+k)+c=(a+c)+k, for some kZ+. Thus a+c<b+c.

2.

Example 2.3.1:

Determine all integers m that satisfy 12m324.

Solution

Since 12m324, m32412=27.

Example 2.3.2:

Determine all integers m that satisfy 14m635.

Solution

Since 14m635, m63514=45.35. Thus the solutions are {mZ|m46}.

Example 2.3.3:

Determine all integers k that satisfy 165+98k0,335+199k0,165+98k<100 and 335+199k<100.

Solution

Since 165+98k0,k1.68.

Since 335+199k0,k1.68.

Since 165+98k<100,98k<265, and k<2.70.

Since 335+199k<100,199k<435, and k<2.18.

Since 1.68k<2.18 and k,k=2.


This page titled 2.3: Arithmetic of inequality is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Pamini Thangarajah.

Support Center

How can we help?