2.E: Exercises
- Page ID
- 7429
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Exercise \(\PageIndex{1}\): Equivalence relation
Determine whether or not each of the following binary relations \(R\) on the given set \(A\) is reflexive, symmetric,
antisymmetric, or transitive. If a relation has a certain property, prove this is so; otherwise, provide a counterexample
to show that it does not. If \(R\) is an equivalence relation, describe the equivalence classes of \(A\).
- Define a relation \(R\) on \(A={\mathbb Z}\) by \(a \,R\, b\) if and only if \( 4 \mid (3a+b).\)
- Define a relation \(R\) on \(A={\mathbb Z}\) by \(a \, R \, b\) if and only if \( 3 \mid (a^2-b^2).\)
- Let \(A=\mathbb{R}\), If \(a.b \in \mathbb{R}\), define \(a \, R \, b\) if and only if \( a-b \in \mathbb{Z}.\)
- Define a relation \(R\) on the set \({\mathbb Z} \times{\mathbb Z}\) by: \((a,b)\, R \,(c,d) \mbox{ if and only if } ac=bd.\)
- Define a relation \(R\) on \({\mathbb Z}\) by: \(a R b\) if and only if \( 5 \mid 2a+3b.\)
- Define a relation \(R\) on \({\mathbb Z}\) by: \(a R b\) if and only if \( 2 \mid a^2+b.\)
- Answer
-
1. i. We shall show that \(R\) is reflexive on \(A\).
Proof:
Let \(a \in {\mathbb Z}.\)
Since \(3a+a=4a\), \(4 \mid (3a+a).\) Thus \(a R a\).
Hence is reflexive on \({\mathbb Z}\) .
ii. We shall show that \(R\) is symmetric on \(A\).
Proof:
Let \(a, b \in {\mathbb Z}\), such that \(a R b\).
Then \(4 \mid (3a+b)\). Thus \(3a+b=4m\), for some integer \(m.\)
We shall show that \(b R a\). That means \( 4 \mid (3a+b).\)
Consider \(3a+b=4m\)
\((3a+b)+(3b+a)=4m +(3b+a)\)
\( (4b+4a)=4m +(3b+a)\)
\( 3b+a=-4m +4b+4a=4(-m+b+a).\)
Since \(m+b+a \in {\mathbb Z}, 4 \mid (3a+b).\)
Hence \(R\) is symmetric on \({\mathbb Z}.\)
iii. We shall show that \(R\) is not antisymmetric on \({\mathbb Z}.\)
Counterexample:
Choose \(a=4\) and \(b=0\) .
Then \(3(4)+0=12\) and \(4 \mid 12\), so \( 4 \mid 3a+b.\) Also \(3(0)+4=12\) and \(4 \mid 4\), so \( 4 \mid 3b+a.\)
However, \(4 \ne 0\) , so \(a \ne b\)
Hence \(R\) is not antisymmetric on \({\mathbb Z}.\)
iv. We shall show that \(R\) is transitive on \({\mathbb Z}.\)
Proof:
Let \(a, b, c \in {\mathbb Z}\), such that \(a R b\) and \(b R c\). That means \(4 \mid 3a+b\) and \(4 \mid 3b+c\).
Since \(4 \mid 3a+b\), \(3a+b =4 m \) for some integer \(m\) , and Since \(4 \mid 3b+c\), \(3b+c =4 n \), for some integer \(n\).
We shall show that \(a R c\). That is \(4 \mid 3a+c.\)
Consider \((3a+b)+(3b+c) =4 m+4n \implies 3a+c+4a+4b=4m+4n \implies 3a+c=4(m+n-a-b).\)
Since \(m+n-a-b \in {\mathbb Z}\), \(4 \mid 3b+c\). Thus, \(a R c\).
Hence \(R\) is transitive on \({\mathbb Z}.\)
v. Since \(R\) is reflexive, symmetric and reflexive, \(a R b\) is an equivalence relation on \({\mathbb Z}.\)
Equivalence classes:
\([0]=\{ x \in {\mathbb Z} \mid x \sim 0 \} = \{ x \in {\mathbb Z} \mid 4 \mid (3x+0) \}= \{ x \in {\mathbb Z} \mid 4m=3x, \text{for some integer } m \}=\{ 0, \pm 4, \pm 8, \cdots \}. \)
\([1]=\{ x \in {\mathbb Z} \mid x \sim 1 \} = \{ x \in {\mathbb Z} \mid 4 \mid (3x+1) \}= \{ x \in {\mathbb Z} \mid 4m=3x+1, \text{for some integer } m\} =\{ \cdots, -3, 1, 5, \cdots \}. \)
\([2]=\{ x \in {\mathbb Z} \mid x \sim 2 \} = \{ x \in {\mathbb Z} \mid 4 \mid (3x+2) \}= \{ x \in {\mathbb Z} \mid 4m=3x+2, \text{for some integer } m\} =\{ \cdots, -2, 2, 6, \cdots \}. \)
\([3]=\{ x \in {\mathbb Z} \mid x \sim 3 \} = \{ x \in {\mathbb Z} \mid 4 \mid (3x+3) \}= \{ x \in {\mathbb Z} \mid 4m=3x+3, \text{for some integer } m\} =\{ \cdots, -1, 3, 7, \cdots \}. \)
6.
Proof of Reflexivity:
Let \(a \in \mathbb{Z}\).
We shall show that . We can show this directly or using cases:
Directly:
Since , and are consecutive integers,
is even. Thus is reflexive on .
Proof of Symmetry:
Since
, .
Thus
.
Since a(a+1) is even,
is even.
Proof of Transitivity:
Having shown that is reflexive, symmetric and transitive on , is an equivalence relation on .◻
Exercise \(\PageIndex{2}\): Divides
Let \(a, b,c, d \in \bf Z_+.\)
- If \(a|b\) and \(a|c\), is it necessarily true that \(a|(b + c)?\)
- If \(a|(b + c)\), is it necessarily true that \(a|b\) and \(a|c\)?
- If \(a|bc\), is it necessarily true that \(a|b\) and \(a|c\)?
- If \((a+b)|c\), is it necessarily true that \(a|c\) and \(b|c\)?
- If \(a|c\) and \(b|c\), is it necessarily true that \((a+b)|c?\)
- If \(a^3|b^4\), is it necessarily true that \(a|b.\)
- If \(a|b\), is it necessarily true that \(a^3 \mid b^5?\)
- If \(c|a\) and \(d|b\), is it necessarily true that \(cd|ab\).
Exercise \(\PageIndex{3}\): Divisibility Rules
- Find all possible values for the missing digit if \(12345X51234\) is divisible by \(3.\)
- Using divisibility tests, check if the number \(355581\) is divisible by \(7\)
- Using divisibility tests, check if the number \(824112284\) is divisible by \(5, 4,\) and \(8.\)
- Answer
-
1. An integer (q) is divisible by 3 iff i=0ndiis divisible by 3, where di is the ith digit of q. Thus, the sum of the digits of 12345X51234 must be divisible by 3.
Simplifying, 3 | (30 + X).
Since 3 | 30, 3 must divide X in order to satisfy 3 |12345X51234.
Thus \( X ∈ { 0, 3, 6, or 9}.\)
2.
An integer (q) is divisible by 7 iff 7 | (a - 2b), where b is the last digit of q and a is the remaining digits.
Step 1: a = 35558, b = 1.
Thus, a - 2b = 35556.
Step 2: a = 3555, b = 6.
Thus, a - 2b = 3543.
Note at this point it is clear that 7 ∤ 355581, since 7 ∤ 3543. However, for practice, we will continue on.
Step 3: a = 354, b = 3.
Thus, a - 2b = 348.
Step 4: a = 34, b = 8.
Thus a - 2b = 18.
Since 7 ∤ 18, 7 ∤ 355581.
3.
Solution:
An integer (q), is divisible by 5 iff its last digits ∈ {0, 5}.
Since 4 ∉ {0, 5}, 5 ∤ 824112284.
Solution:
An integer (q) is divisible by 8 iff q’s last three digits are divisible by 8.
Since 8 ∤ 284, 8 ∤ 824112284.
An integer (q) is divisible by 4 iff q’s last two digits are divisible by 4.
Since 4 ∣ 84, 4 ∣ 824112284.
Exercise \(\PageIndex{4}\): Divisiblity
1. Let \(a\) be a positive integer such that \(3|(a+1)\). Show that \(3|(7a+4)\).
2. Let \(a\) and \(b\) be positive integers such that \(7|(a+2b-2)\) and \( 7|(b-9).\) Prove that \(7|(a+b).\)
3. Let \(a\), \(b\), \(c\) and \(d\) be positive integers such that \(4|(abc+d)\), \(4|(adc+b)\), \(4|(abd+c)\) and \(4|(bcd+a)\). Prove that \(4|(a^2+b^2+c^2+d^2).\)
4. Let \(a\), \(b\), \(c\) and \(d\) be positive integers such that \(ad-bc >1\). Show that at least of these four integers is not divisible by \(ad-bc\).
Exercise \(\PageIndex{5}\): Middle digit
- In a \(113\)-digit multiple of \(13\), the first \(56\) digits are all \(5\)s and the last \(56\) digits are all \(8\)s. What is the middle digit?
- In a \(113\)-digit multiple of \(7\), the first \(56\) digits are all \(8\)s and the last \(56\) digits are all \(1\)s. What is the middle digit?
Exercise \(\PageIndex{6}\): True or False
Prove the statements that are true and give counterexamples to disprove those that are false.
Let \(a,b\) and \(c\) be integers.
- If \(a|b\) then \(b|a\).
- If \(a|bc\) then \(a|b\) and \(a|c.\)
- If \(a|b\) and \(a|c\) then \(a|bc\).
- If \(a|b\) and \(a|c\) then \(a|(b+c)\) and \(a|(b-c)\).
- If \(a|(b+c)\) and \(a|(b-c)\) then \(a|b\) and \(a|c\).
- If \(a|b\) and \(a|c\) then \(a|(b+c)\) and \(a|(2b+c)\).
- If \(a|(b+c)\) and \(a|(2b+c)\) then \(a|b\) and \(a|c\)
Exercise \(\PageIndex{7}\): Induction
Prove that for all integers \( n\geq 1, \,5^{2n}-2^{5n}\) is divisible by \(7.\)
- Answer
-
use induction to prove the statement.
Exercise \(\PageIndex{8}\): Induction or by cases
Prove that for all integer \( n\geq 1, \,6\) divides \(n^3-n.\)
- Answer
-
use induction to prove the statement.
Exercise \(\PageIndex{9}\): True or false
Which of the following statements are true. Prove the statement(s) that are true and give a counterexample for the statement(s) that are false.
If \( a,b,c\) and \(d\) are integers such that \(a < b\) and \(c < d,\) then \(ac < bd \).
If \( a,b,c\) and \(d\) are integers such that \(a < 0 < b\) and \(c < 0 < d,\) then \(ac < bd \).
If \(a,b,c\) and \(d\) are integers such that \(0 < a < b\) and \(c < 0 < d,\) then \(ac < bd \).
If \( a,b,c\) and \(d\) are integers such that \(a < b\) and \(c < d,\) then \(a-d < b-c. \)
- Answer
-
TBD
Exercise \(\PageIndex{10}\) Tip?
There are 9 waiters and 1 busboy working at a restaurant. The tips are always in whole number of dollars. At the end of the day, the waiters share the tips equally among themselves as far as possible, each getting a whole number of dollars. The busboy gets what is left. How much does he get on a day when the total amount of the tips is $980.
- Answer
-
980 (mod 9) ≡ 8 (mod 9), thus, the busboy would receive $ 8 when the total tip for the day was $ 980.
Exercise \(\PageIndex{11}\) Day of the week
March 1 on some year is a Friday. On what day of the week will Christmas be that year?
- Answer
-
Christmas falls on December 25th in any given year. The number of days from March 1 till Christmas (430)+(631) -7=299. Note: We consider March 1 as day zero and there are 6 days from December 25 to December 31, thus seven days must be subtracted from the total number of days. Since 299 = 7(42) + 5 and March 1 is a Friday, Christmas will fall five days after Friday, which is a Wednesday. Thus, if in a given year, March 1 is a Friday, Christmas will fall on a Wednesday that year.
Exercise \(\PageIndex{12}\): Inequality
Solve \(0<199m-335<100\) for all integers \(m\).
- Answer
-
\(m=2\).