4.2: Linear Systems of Differential Equations
- Page ID
- 17435
This page is a draft and is under active development.
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)A first-order system of differential equations that can be written in the form
\begin{equation} \label{eq:4.2.1}
\begin{array}{ccl}
y'_1&=&a_{11}(t)y_1+a_{12}(t)y_2+\cdots+a_{1n}(t)y_n+f_1(t)\\
y'_2&=&a_{21}(t)y_1+a_{22}(t)y_2+\cdots+a_{2n}(t)y_n+f_2(t)\\
&\vdots\\
y'_n &=& a_{n1}(t)y_1+a_{n2}(t)y_2+\cdots+a_{nn}(t)y_n+f_n(t)\end{array}
\end{equation}
is called a \( \textcolor{blue}{\mbox{linear system}} \).
The linear system \eqref{eq:4.2.1} can be written in matrix form as
\begin{eqnarray*}
{y'}_n = A_{nn} y_n + f_n,
\end{eqnarray*}
or more briefly as
\begin{equation} \label{eq:4.2.2}
{\bf y}'=A(t){\bf y}+{\bf f}(t),
\end{equation}
where
\begin{eqnarray*}
{\bf y} = y_n, \quad A(t) = A_{nn}, \quad \mbox{and} \quad {\bf f}(t) = f_n.
\end{eqnarray*}
We call \(A\) the \( \textcolor{blue}{\mbox{coefficient matrix}} \) of \eqref{eq:4.2.2} and \({\bf f}\) the \( \textcolor{blue}{\mbox{forcing function}} \). We'll say that \(A\) and \({\bf f}\) are \( \textcolor{blue}{\mbox{continuous}} \) if their entries are continuous. If \({\bf f}={\bf 0}\), then \eqref{eq:4.2.2} is \( \textcolor{blue}{\mbox{homogeneous}} \); otherwise, \eqref{eq:4.2.2} is \( \textcolor{blue}{\mbox{nonhomogeneous}} \).
An initial value problem for \eqref{eq:4.2.2} consists of finding a solution of \eqref{eq:4.2.2} that equals a given constant vector
\begin{eqnarray*}
{\bf k} = k_n.
\end{eqnarray*}
at some initial point \(t_0\). We write this initial value problem as
\begin{eqnarray*}
{\bf y}' = A(t){\bf y} + {\bf f}(t), \quad {\bf y}(t_0) = {\bf k}.
\end{eqnarray*}
The next theorem gives sufficient conditions for the existence of solutions of initial value problems for \eqref{eq:4.2.2}. We omit the proof.
Theorem \(\PageIndex{1}\)
Suppose the coefficient matrix \(A\) and the forcing function \({\bf f}\) are continuous on \((a,b)\), let \(t_0\) be in \((a,b)\), and let \({\bf k}\) be an arbitrary constant \(n\)-vector. Then the initial value problem
\begin{eqnarray*}
{\bf y}' = A(t) {\bf y} + {\bf f}(t), \quad {\bf y} (t_0) = {\bf k}
\end{eqnarray*}
has a unique solution on \((a,b)\).
- Proof
-
Add proof here and it will automatically be hidden if you have a "AutoNum" template active on the page.
Example \(\PageIndex{1}\)
(a) Write the system
\begin{equation} \label{eq:4.2.3}
\begin{array}{rcl}
y_1'&=&\phantom{2}y_1+2y_2+2e^{4t} \\
y_2'&=&2y_1+\phantom{2}y_2+\phantom{2}e^{4t}
\end{array}
\end{equation}
in matrix form and conclude from Theorem \((4.2.1)\) that every initial value problem for \eqref{eq:4.2.3} has a unique solution on \((-\infty,\infty)\).
(b) Verify that
\begin{equation} \label{eq:4.2.4}
{\bf y} = {1\over 5}\left[ \begin{array} \\ 8 \\ 7e^{4t} \end{array} \right] + c_1 \left[ \begin{array} \\ 11 \\ e^{3t} \end{array} \right] + c_2 \left[ \begin{array} \\ 1 \\ {-1} e^{-t} \end{array} \right]
\end{equation}
is a solution of \eqref{eq:4.2.3} for all values of the constants \(c_1\) and \(c_2\).
(c) Find the solution of the initial value problem
\begin{equation} \label{eq:4.2.5}
{\bf y}' = \left[ \begin{array} \\ 1 & 2 \\ 2 & 1 \end{array} \right] {\bf y} + \left[ \begin{array} \\ 21 \\ e^{4t} \end{array} \right], \quad {\bf y}(0)= {1 \over 5} \left[ \begin{array} \\ 3 \\ 22 \end{array} \right].
\end{equation}
- Answer
-
(a) The system \eqref{eq:4.2.3} can be written in matrix form as
\begin{eqnarray*}
{\bf y}' = \left[\begin{array} \\ 1 & 2 \\ 2 & 1 \end{array} \right] {\bf y} + \left[ \begin{array} \\ 21 \\ e^{4t} \end{array} \right].
\end{eqnarray*}An initial value problem for \eqref{eq:4.2.3} can be written as
\begin{eqnarray*}
{\bf y}' = \left[ \begin{array} \\ 1 & 2 \\ 2 & 1 \end{array} \right] {\bf y} + \left[ \begin{array} \\ 21 \\ e^{4t} \end{array} \right], \quad y(t_0) = \left[ \begin{array} \\ {k_1} \\ {k_2} \end{array} \right].
\end{eqnarray*}Since the coefficient matrix and the forcing function are both continuous on \((-\infty,\infty)\), Theorem \((4.2.1)\) implies that this problem has a unique solution on \((-\infty,\infty)\).
(b) If \({\bf y}\) is given by \eqref{eq:4.2.4}, then
\begin{eqnarray*}
A{\bf y}+{\bf f}&=&
{1\over5} \left[ \begin{array} \\ 1 & 2 \\ 2 & 1 \end{array} \right] \left[ \begin{array} \\ 8 \\ 7e^{4t} \end{array} \right] +
c_1 \left[ \begin{array} \\ 1 & 2 \\ 2 & 1 \end{array} \right] \left[ \begin{array} \\11 \\e^{3t} \end{array} \right] \\
&&+c_2 \left[ \begin{array} \\ 1 & 2 \\ 2 & 1 \end{array} \right] \left[ \begin{array} \\ 1 \\ {-1}e^{-t} \end{array} \right]
+ \left[ \begin{array} \\ 2 \\ 1e^{4t} \end{array} \right] \\
&=&{1\over5} \left[ \begin{array} \\ {22} \\ {23}e^{4t} \end{array} \right] +c_1 \left[ \begin{array} \\ 3 \\ 3e^{3t} \end{array} \right] + c_2 \left[ \begin{array} \\ {-1} \\ 1e^{-t} \end{array} \right]
+ \left[ \begin{array} \\ 2 \\ 1e^{4t} \end{array} \right] \\
&=&{1\over5} \left[ \begin{array} \\ {32} \\ {28}e^{4t} \end{array} \right] + 3c_1 \left[ \begin{array} \\ 11 \\ e^{3t} \end{array} \right] - c_2 \left[ \begin{array} \\ 1 \\ {-1}e^{-t} \end{array} \right]
={\bf y}'.
\end{eqnarray*}(c) We must choose \(c_1\) and \(c_2\) in \eqref{eq:4.2.4} so that
\begin{eqnarray*}
\displaystyle\frac{1}{5} \left[ \begin{array} \\ 8 \\ 7 \end{array} \right] + c_1 \left[ \begin{array} \\ 1 \\ 1 \end{array} \right] + c_2 \left[ \begin{array} \\ 1 \\ -1 \end{array} \right] = \displaystyle\frac{1}{5} \left[ \begin{array} \\ 3 \\ {22} \end{array} \right],
\end{eqnarray*}which is equivalent to
\begin{eqnarray*}
\left[ \begin{array} \\ 1 & 1 \\ 1 & {-1} \end{array} \right] \left[ \begin{array} \\ {c_1} \\ {c_2} \end{array} \right] = \left[ \begin{array} \\ {-1} \\ 3 \end{array} \right].
\end{eqnarray*}Solving this system yields \(c_1=1\), \(c_2=-2\), so
\begin{eqnarray*}
{\bf y} = \displaystyle\frac{1}{5} \left[ \begin{array} \\ 8 \\ 7 e^{4t} \end{array} \right] + \left[ \begin{array} \\ 11 \\ e^{3t}-2 \end{array} \right] \left[ \begin{array} \\ 1 \\ {-1} e^{-t} \end{array} \right]
\end{eqnarray*}is the solution of \eqref{eq:4.2.5}.
The theory of \(n\times n\) linear systems of differential equations is analogous to the theory of the scalar \(n\)th order equation
\begin{equation} \label{eq:4.2.6}
P_0(t)y^{(n)}+P_1(t)y^{(n-1)}+\cdots+P_n(t)y=F(t),
\end{equation}
as developed in Sections 3.1. For example, by rewriting \eqref{eq:4.2.6} as an equivalent linear system it can be shown that Theorem \((4.2.1)\) implies Theorem \((3.1.1)\) (Exercise \((4.2E.12)\).